scholarly journals The effects of tidal volume size and driving pressure levels on pulmonary complement activation: an observational study in critically ill patients

2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Friso M. de Beer ◽  
◽  
Luuk Wieske ◽  
Gerard van Mierlo ◽  
Diana Wouters ◽  
...  

Abstract Background Mechanical ventilation can induce or even worsen lung injury, at least in part via overdistension caused by too large volumes or too high pressures. The complement system has been suggested to play a causative role in ventilator-induced lung injury. Aims and methods This was a single-center prospective study investigating associations between pulmonary levels of complement activation products and two ventilator settings, tidal volume (VT) and driving pressure (ΔP), in critically ill patients under invasive ventilation. A miniature bronchoalveolar lavage (BAL) was performed for determination of pulmonary levels of C5a, C3b/c, and C4b/c. The primary endpoint was the correlation between BAL fluid (BALF) levels of C5a and VT and ΔP. Levels of complement activation products were also compared between patients with and without ARDS or with and without pneumonia. Results Seventy-two patients were included. Median time from start of invasive ventilation till BAL was 27 [19 to 34] hours. Median VT and ΔP before BAL were 6.7 [IQR 6.1 to 7.6] ml/kg predicted bodyweight (PBW) and 15 [IQR 11 to 18] cm H2O, respectively. BALF levels of C5a, C3b/c and C4b/c were neither different between patients with or without ARDS, nor between patients with or without pneumonia. BALF levels of C5a, and also C3b/c and C4b/c, did not correlate with VT and ΔP. Median BALF levels of C5a, C3b/c, and C4b/c, and the effects of VT and ΔP on those levels, were not different between patients with or without ARDS, and in patients with or without pneumonia. Conclusion In this cohort of critically ill patients under invasive ventilation, pulmonary levels of complement activation products were independent of the size of VT and the level of ΔP. The associations were not different for patients with ARDS or with pneumonia. Pulmonary complement activation does not seem to play a major role in VILI, and not even in lung injury per se, in critically ill patients under invasive ventilation.

2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
David M. P. van Meenen ◽  
◽  
Ary Serpa Neto ◽  
Frederique Paulus ◽  
Coen Merkies ◽  
...  

Abstract Background Outcome prediction in critically ill patients under invasive ventilation remains extremely challenging. The driving pressure (ΔP) and the mechanical power of ventilation (MP) are associated with patient-centered outcomes like mortality and duration of ventilation. The objective of this study was to assess the predictive validity for mortality of the ΔP and the MP at 24 h after start of invasive ventilation. Methods This is a post hoc analysis of an observational study in intensive care unit patients, restricted to critically ill patients receiving invasive ventilation for at least 24 h. The two exposures of interest were the modified ΔP and the MP at 24 h after start of invasive ventilation. The primary outcome was 90-day mortality; secondary outcomes were ICU and hospital mortality. The predictive validity was measured as incremental 90-day mortality beyond that predicted by the Acute Physiology, Age and Chronic Health Evaluation (APACHE) IV score and the Simplified Acute Physiology Score (SAPS) II. Results The analysis included 839 patients with a 90-day mortality of 42%. The median modified ΔP at 24 h was 15 [interquartile range 12 to 19] cm H2O; the median MP at 24 h was 206 [interquartile range 145 to 298] 10−3 J/min/kg predicted body weight (PBW). Both parameters were associated with 90-day mortality (odds ratio (OR) for 1 cm H2O increase in the modified ΔP, 1.05 [95% confidence interval (CI) 1.03 to 1.08]; P < 0.001; OR for 100 10−3 J/min/kg PBW increase in the MP, 1.20 [95% CI 1.09 to 1.33]; P < 0.001). Area under the ROC for 90-day mortality of the modified ΔP and the MP were 0.70 [95% CI 0.66 to 0.74] and 0.69 [95% CI 0.65 to 0.73], which was neither different from that of the APACHE IV score nor that of the SAPS II. Conclusions In adult patients under invasive ventilation, the modified ΔP and the MP at 24 h are associated with 90 day mortality. Neither the modified ΔP nor the MP at 24 h has predictive validity beyond the APACHE IV score and the SAPS II.


Author(s):  
Erfan Kazemi ◽  
Reihane Soldoozi Nejat ◽  
Fatemeh Ashkan ◽  
Hossein Sheibani

Abstract Background Abnormal laboratory findings are common in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The aim of this systematic review was to investigate the effect of the level of some laboratory factors (C-reactive protein (CRP), creatinine, leukocyte count, hemoglobin, and platelet count) on the severity and outcome of coronavirus disease 2019 (COVID-19). Methods We searched PubMed, Web of Science, Scopus, and Google Scholar. We collected the articles published before May 26, 2020. We gathered the laboratory factors in groups of patients with COVID-19, and studied the relation between level of these factors with severity and outcome of the disease. Results Mean CRP level, creatinine, hemoglobin, and the leukocytes count in the critically ill patients were significantly higher than those of the other groups (non-critical patients); mean CRP = 54.81 mg/l, mean creatinine = 86.82 μmol/l, mean hemoglobin = 144.05 g/l, and mean leukocyte count = 7.41 × 109. The lymphocyte count was higher in patients with mild/moderate disease (mean: 1.32 × 109) and in the invasive ventilation group (mean value of 0.72 × 109), but it was considerably lower than those of the other two groups. The results showed that the platelet count was higher in critically ill patients (mean value of 205.96 × 109). However, the amount was lower in the invasive ventilation group compared with the other groups (mean level = 185.67 × 109). Conclusion With increasing disease severity, the leukocyte count and the level of CRP increase significantly and the lymphocyte count decreases. There seems to be a significant relation between platelet level, hemoglobin, and creatinine level with severity of the disease. However, more studies are required to confirm this.


2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Sophia van der Hoeven ◽  
◽  
Lorenzo Ball ◽  
Federico Constantino ◽  
David M. van Meenen ◽  
...  

Abstract Background Accumulated airway secretions in the endotracheal tube increase work of breathing and may favor airway colonization eventually leading to pneumonia. The aim of this preplanned substudy of the ‘Preventive Nebulization of Mucolytic Agents and Bronchodilating Drugs in Intubated and Ventilated Intensive Care Unit Patients trial’ (NEBULAE) was to compare the effect of routine vs on-demand nebulization of acetylcysteine with salbutamol on accumulation of secretions in endotracheal tubes in critically ill patients. Results In this single-center substudy of a national multicenter trial, patients were randomized to a strategy of routine nebulizations of acetylcysteine with salbutamol every 6 h until end of invasive ventilation, or to a strategy with on-demand nebulizations of acetylcysteine or salbutamol applied on strict clinical indications only. The primary endpoint, the maximum reduction in cross-sectional area (CSA) of the endotracheal tube was assessed with high-resolution computed tomography. Endotracheal tubes were collected from 72 patients, 36 from patients randomized to the routine nebulization strategy and 36 of patients randomized to the on-demand nebulization strategy. The maximum cross-sectional area (CSA) of the endotracheal tube was median 12 [6 to 15]% in tubes obtained from patients in the routine nebulization group, not different from median 9 [6 to 14]% in tubes obtained from patients in the on-demand nebulization group (P = 0.33). Conclusion In adult critically ill patients under invasive ventilation, routine nebulization of mucolytics and bronchodilators did not affect accumulation of airway secretions in the endotracheal tube. Trial registration Clinicaltrials.gov Identifier: NCT02159196


2020 ◽  
Vol 46 (6) ◽  
pp. 1124-1126 ◽  
Author(s):  
Marie-Christine Copin ◽  
◽  
Erika Parmentier ◽  
Thibault Duburcq ◽  
Julien Poissy ◽  
...  

2017 ◽  
Vol 2 (2) ◽  
pp. 1-12 ◽  
Author(s):  
Ruxana T. Sadikot ◽  
Arun V. Kolanjiyil ◽  
Clement Kleinstreuer ◽  
Israel Rubinstein

Acute lung injury and acute respiratory distress syndrome (ARDS) represent a heterogenous group of lung disease in critically ill patients that continues to have high mortality. Despite the increased understanding of the molecular pathogenesis of ARDS, specific targeted treatments for ARDS have yet to be developed. ARDS represents an unmet medical need with an urgency to develop effective pharmacotherapies. Multiple promising targets have been identified that could lead to the development of potential therapies for ARDS; however, they have been limited because of difficulty with the mode of delivery, especially in critically ill patients. Nanobiotechnology is the basis of innovative techniques to deliver drugs targeted to the site of inflamed organs, such as the lungs. Nanoscale drug delivery systems have the ability to improve the pharmacokinetics and pharmacodynamics of agents, allowing an increase in the biodistribution of therapeutic agents to target organs and resulting in improved efficacy with reduction in drug toxicity. Although attractive, delivering nanomedicine to lungs can be challenging as it requires sophisticated systems. Here we review the potential of novel nanomedicine approaches that may prove to be therapeutically beneficial for the treatment of this devastating condition.


Sign in / Sign up

Export Citation Format

Share Document