scholarly journals A hemolysin secretion pathway-based novel secretory expression platform for efficient manufacturing of tag peptides and anti-microbial peptides in Escherichia coli

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Wen Zhu ◽  
Lifu Hu ◽  
Yang Wang ◽  
Liangyin Lv ◽  
Hui Wang ◽  
...  

Abstract Background Although Escherichia coli has been widely used for the expression of exogenous proteins, the secretory expression in this system is still a big obstacle. As one of the most important secretion pathways, hemolysin A (HlyA) system of E. coli can transport substrates directly from the cytoplasm to extracellular medium without the formation of any periplasmic intermediate, making it an ideal candidate for the development of the secretory production platform for exogenous proteins. Results In this work, we developed a novel production platform, THHly, based on the HlyA secretion system, and explored its applications in the efficient preparation and quick detection of tag peptides and anti-microbial peptides. In this novel platform the signal sequence of HlyA is fused to the C-terminal of target peptide, with Tobacco Etch Virus (TEV) protease cleavage site and 6*His tag between them. Five tag peptides displayed good secretory properties in E. coli BL21 (DE3), among which T7 tag and S tag were obtained by two rounds of purification steps and TEV cleavage, and maintained their intrinsic immunogenicity. Furthermore, Cecropin A and Melittin, two different types of widely explored anti-microbial peptides, were produced likewise and verified to possess anti-microbial/anti-tumor bioactivities. No significant bacterial growth inhibition was observed during the fusion protein expression, indicating that the fusion form not only mediated the secretion but also decreased the toxicity of anti-microbial peptides (AMPs) to the host bacteria. To the best of our knowledge, this is the first report to achieve the secretory expression of these two AMPs in E. coli with considerable potential for manufacturing and industrialization purposes. Conclusions The results demonstrate that the HlyA based novel production platform of E. coli allowed the efficient secretory production and purification of peptides, thus suggesting a promising strategy for the industrialized production of peptide pharmaceuticals or reagents. Graphical Abstract

Amylase ◽  
2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Majida A. Muhammad ◽  
Samia Falak ◽  
Naeem Rashid ◽  
Nasir Ahmed ◽  
Qurra-Tul-Ann A. Gardner ◽  
...  

AbstractIn order to elucidate if Escherichia coli secretion system recognizes the N-terminally truncated signal sequence of an archaeal α-amylase from Thermococcus kodakarensis (Tk1884) and secretes the recombinant protein to the extracellular medium, we have cloned Tk1884 with the deletion of the sixteen N-terminal amino acids and produced the recombinant protein Tk1884Δ16 in E. coli. Analysis of the intracellular, membranous and extracellular fractions demonstrated the presence of Tk1884Δ16 in all the three fractions. The intracellular α-amylase activity, similar to the membranous fraction, increased with the passage of time till 8 h of induction and then decreased. In contrast, the extracellular α-amylase activity slowly increased with the passage of time after induction. The extracellular amylase activity was purified and determination of the molecular mass by electrospray ionization mass spectrometry demonstrated that Tk1884Δ16 was secreted to the extracellular medium without cleavage of the signal peptide. To the best of our knowledge, this is the first report on recognition of N-terminally truncated signal peptide of archaeal origin by E. coli.


2020 ◽  
Vol 14 (4) ◽  
pp. 269-282
Author(s):  
Sadra S. Tehrani ◽  
Golnaz Goodarzi ◽  
Mohsen Naghizadeh ◽  
Seyyed H. Khatami ◽  
Ahmad Movahedpour ◽  
...  

Background: Granulocyte colony-stimulating factor (G-CSF) expressed in engineered Escherichia coli (E. coli) as a recombinant protein is utilized as an adjunct to chemotherapy for improving neutropenia. Recombinant proteins overexpression may lead to the creation of inclusion bodies whose recovery is a tedious and costly process. To overcome the problem of inclusion bodies, secretory production might be used. To achieve a mature secretory protein product, suitable signal peptide (SP) selection is a vital step. Objective: In the present study, we aimed at in silico evaluation of proper SPs for secretory production of recombinant G-CSF in E. coli. Methods: Signal peptide website and UniProt were used to collect the SPs and G-CSF sequences. Then, SignalP were utilized in order to predict the SPs and location of their cleavage site. Physicochemical features and solubility were investigated by ProtParam and Protein-sol tools. Fusion proteins sub-cellular localization was predicted by ProtCompB. Results: LPP, ELBP, TSH, HST3, ELBH, AIDA and PET were excluded according to SignalP. The highest aliphatic index belonged to OMPC, TORT and THIB and PPA. Also, the highest GRAVY belonged to OMPC, ELAP, TORT, BLAT, THIB, and PSPE. Furthermore, G-CSF fused with all SPs were predicted as soluble fusion proteins except three SPs. Finally, we found OMPT, OMPF, PHOE, LAMB, SAT, and OMPP can translocate G-CSF into extracellular space. Conclusion: Six SPs were suitable for translocating G-CSF into the extracellular media. Although growing data indicate that the bioinformatics approaches can improve the precision and accuracy of studies, further experimental investigations and recent patents explaining several inventions associated to the clinical aspects of SPs for secretory production of recombinant GCSF in E. coli are required for final validation.


Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 513-521
Author(s):  
Nancy J Trun ◽  
Thomas J Silhavy

ABSTRACT The prlC gene of E. coli was originally identified as an allele, prlC1, which suppresses certain signal sequence mutations in the genes for several exported proteins. We have isolated six new alleles of prlC that also confer this phenotype. These mutations can be placed into three classes based on the degree to which they suppress the lamBsignal sequence deletion, lamBs78. Genetic mapping reveals that the physical location of the mutations in prlC correlates with the strength of the suppression, suggesting that different regions of the gene can be altered to yield a suppressor phenotype. We also describe an in vivo cloning procedure using λplacMu9H. The procedure relies on transposition and illegitimate recombination to generate a specialized transducing phage that carries prlC1. This method should be applicable to any gene for which there is a mutant phenotype.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Young Su Kim ◽  
Hye-Jeong Lee ◽  
Man-ho Han ◽  
Nam-kyung Yoon ◽  
Yeu-chun Kim ◽  
...  

Abstract Background Growth factors (GFs) are signaling proteins that affect cellular processes such as growth, proliferation, and differentiation. GFs are used as cosmeceuticals, exerting anti-wrinkle, anti-aging, and whitening effects, and also as pharmaceuticals to treat wounds, growth failure, and oral mucositis. However, in mammalian and bacterial cells, low productivity and expression in inclusion bodies, respectively, of GFs does not satisfy the consumer demand. Here, we aimed to develop a bacterial expression system that produces high yields of soluble GFs that can be purified in their native forms. Results We present Fh8, an 8-kDa peptide from Fasciola hepatica with an N-terminal hexa-histidine (6HFh8), as a fusion partner for enhanced human GF production in recombinant Escherichia coli. The fusion partner harboring a tobacco etch virus (TEV) protease cleavage site was fused to the N-terminus of 10 human GFs: acidic and basic fibroblast growth factors (aFGF and bFGF, respectively), epidermal growth factor (EGF), human growth hormone (hGH), insulin-like growth factor 1 (IGF-1), vascular endothelial growth factor 165 (VEGF165), keratinocyte growth factor 1 (KGF-1), placental growth factor (PGF), stem cell factor (SCF), and tissue inhibitor of metalloproteinase 1 (TIMP-1). The fusion proteins were expressed in E. coli under the control of T7 promoter at three temperatures (25 °C, 30 °C, and 37 °C). All individual fusion proteins, except for SCF and TIMP-1, were successfully overexpressed in cytoplasmic soluble form at more than one temperature. Further, the original aFGF, IGF-1, EGF, and VEGF165 proteins were cleaved from the fusion partner by TEV protease. Five-liter fed-batch fermentation approaches for the 6HFh8-aFGF (lacking disulfide bonds) and 6HFh8-VEGF165 (a cysteine-rich protein) were devised to obtain the target protein at concentrations of 9.7 g/l and 3.4 g/l, respectively. The two GFs were successfully highly purified (> 99% purity). Furthermore, they exerted similar cell proliferative effects as those of their commercial equivalents. Conclusions We demonstrated that 6HFh8-GF fusion proteins could be overexpressed on a g/l scale in the cytoplasm of E. coli, with the GFs subsequently highly purified and maintaining their biological activity. Hence, the small protein 6HFh8 can be used for efficient mass-production of various GFs.


2007 ◽  
Vol 189 (14) ◽  
pp. 4975-4983 ◽  
Author(s):  
Blaine A. Legaree ◽  
Calvin B. Adams ◽  
Anthony J. Clarke

ABSTRACT Penicillin-binding protein 2 (PBP 2) has long been known to be essential for rod-shaped morphology in gram-negative bacteria, including Escherichia coli and Pseudomonas aeruginosa. In the course of earlier studies with P. aeruginosa PBP 2, we observed that E. coli was sensitive to the overexpression of its gene, pbpA. In this study, we examined E. coli overproducing both P. aeruginosa and E. coli PBP 2. Growth of cells entered a stationary phase soon after induction of gene expression, and cells began to lyse upon prolonged incubation. Concomitant with the growth retardation, cells were observed to have changed morphologically from typical rods into enlarged spheres. Inactive derivatives of the PBP 2s were engineered, involving site-specific replacement of their catalytic Ser residues with Ala in their transpeptidase module. Overproduction of these inactive PBPs resulted in identical effects. Likewise, overproduction of PBP 2 derivatives possessing only their N-terminal non-penicillin-binding module (i.e., lacking their C-terminal transpeptidase module) produced similar effects. However, E. coli overproducing engineered derivatives of PBP 2 lacking their noncleavable, N-terminal signal sequence and membrane anchor were found to grow and divide at the same rate as control cells. The morphological effects and lysis were also eliminated entirely when overproduction of PBP 2 and variants was conducted with E. coli MHD79, a strain lacking six lytic transglycosylases. A possible interaction between the N-terminal domain of PBP 2 and lytic transglycosylases in vivo through the formation of multienzyme complexes is discussed.


1999 ◽  
Vol 341 (2) ◽  
pp. 285-291 ◽  
Author(s):  
Donna D. SONG ◽  
Nicholas A. JACQUES

The recombinant fructosyltransferase (Ftf) of Streptococcus salivarius was expressed in Escherichia coli and purified to electrophoretic homogeneity after a combination of adsorption, ion-exchange and gel-filtration chromatography. The N-terminal signal sequence of the Ftf was removed by E. coli at the same site as in its natural host. The purified Ftf exhibited maximum activity at pH 6.0 and 37 °C, was activated by Ca2+, but inhibited by the metal ions Cu2+, Zn2+, Hg2+ and Fe3+. The enzyme catalysed the transfer of the fructosyl moiety of sucrose to a number of acceptors, including water, glucose and sucrose via a Ping Pong mechanism involving a fructosyl-enzyme intermediate. While this mechanism of catalysis is utilized by the levansucrases of Bacillus subtilis and Acetobacter diazotrophicus and the values of the kinetic constants for the three enzymes are similar, sucrose was a far more efficient fructosyl-acceptor for the Ftf of S. salivarius than for the two other enzymes.


2000 ◽  
Vol 66 (11) ◽  
pp. 5024-5029 ◽  
Author(s):  
Luis A. Fernández ◽  
Isabel Sola ◽  
Luis Enjuanes ◽  
Víctor de Lorenzo

ABSTRACT A simple method for the nontoxic, specific, and efficient secretion of active single-chain Fv antibodies (scFvs) into the supernatants ofEscherichia coli cultures is reported. The method is based on the well-characterized hemolysin transport system (Hly) of E. coli that specifically secretes the target protein from the bacterial cytoplasm into the extracellular medium without a periplasmic intermediate. The culture media that accumulate these Hly-secreted scFv's can be used in a variety of immunoassays without purification. In addition, these culture supernatants are stable over long periods of time and can be handled basically as immune sera.


2017 ◽  
Author(s):  
S. Eric Nybo ◽  
Jacqueline Saunders ◽  
Sean P. McCormick

AbstractValeriana officinalis is a medicinal herb which produces a suite of compounds in its root tissue useful for treatment of anxiety and insomnia. The sesquiterpene components of the root extract, valerenic acid and valerena-1,10-diene, are thought to contribute to most of the observed anxiolytic of Valerian root preparations. However, valerenic acid and its biosynthetic intermediates are only produced in low quantities in the roots of V. officinalis. Thus, in this report, Escherichia coli was metabolically engineered to produce substantial quantities of valerena-1,10-diene in shake flask fermentations with decane overlay. Expression of the wildtype valerenadiene synthase gene (pZE-wvds) resulted in production of 12 μg/mL in LB cultures using endogenous FPP metabolism. Expression of a codon-optimized version of the valerenadiene synthase gene (pZE-cvds) resulted in 3-fold higher titers of valerenadiene (32 μg/mL). Co-expression of pZE-cvds with an engineered methyl erythritol phosphate (MEP) pathway improved valerenadiene titers 65-fold to 2.09 mg/L valerenadiene. Optimization of the fermentation medium to include glycerol supplementation enhanced yields by another 5.5-fold (11.0 mg/L valerenadiene). The highest production of valerenadiene resulted from engineering the codon-optimized valerenadiene synthase gene under strong Ptrc and PT7 promoters and via co-expression of an exogenous mevalonate (MVA) pathway. These efforts resulted in an E. coli production strain that produced 62.0 mg/L valerenadiene (19.4 mg/L/OD600 specific productivity). This E. coli production platform will serve as the foundation for the synthesis of novel valerenic acid analogues potentially useful for the treatment of anxiety disorders.


Author(s):  
Shahrokh Ghovvati ◽  
Zahra Pezeshkian ◽  
Seyed Ziaeddin Mirhoseini

Signal peptides (SPs) are one of the most important factors for suitable secretion of the recombinant  heterologous proteins in Escherichia coli (E. coli). The objective of this study was to identify a panel of signal peptides (among the 90 biologically active SPs) required for the secretory production of interferon-beta 1b (IFN-beta 1b) recombinant protein into the periplasmic space of E. coli host. In the initial step, after predicting the accurate locations of the cleavage sites of signal peptides and their discrimination scores using SignalP 4.1 server, 31 SPs were eliminated from further analysis because their discrimination scores were less than 0.5 or their cleavage sites were inappropriately located. Therefore, only 59 SPs could be theoretically applied to secrete IFN-beta 1b into the periplasmic space of E. coli. The physico-chemical and the solubility properties, which are necessary parameters for selecting appropriate SPs, were predicted using ProtParam and SOLpro servers using the 59 remaining signal peptides. The final subcellular localization of IFN-beta 1b in combination with different SPs was predicted using ProtComB server. Consequently, according to the ranking of 59  confirmed SPs, the obtained results revealed that SPs Flagellar P-ring protein (flgI), Glucan1,3-beta-glucosidase I/II (EXG1) and outer membrane protein C (OmpC) were theoretically the most potentand desirable SPs for secretion of recombinant IFN-beta 1b into the periplasmic space of E. coli. For further studies in the future, the experimental investigations on the obtained results will be considered.


2021 ◽  
Author(s):  
Young Su Kim ◽  
Hye-Jeong Lee ◽  
Man-ho Han ◽  
Nam-kyung Yoon ◽  
Yeu-chun Kim ◽  
...  

Abstract Background: Growth factors (GFs) are signaling proteins that affect cellular processes such as growth, proliferation, and differentiation. GFs are used as cosmeceuticals, exerting anti-wrinkle, anti-aging, and whitening effects, and also as pharmaceuticals to treat wounds, growth failure, and oral mucositis. However, in mammalian and bacterial cells, low productivity and expression in inclusion bodies, respectively, of GFs does not satisfy the consumer demand. Here, we aimed to develop a bacterial expression system that produces high yields of soluble GFs that can be purified in their native forms.Results: We present Fh8, an 8-kDa peptide from Fasciola hepatica with an N-terminal hexa-histidine (6HFh8), as a fusion partner for enhanced human GF production in recombinant Escherichia coli. The fusion partner harboring a tobacco etch virus (TEV) protease cleavage site was fused to the N-terminus of 10 human GFs: acidic and basic fibroblast growth factors (aFGF and bFGF, respectively), epidermal growth factor (EGF), human growth hormone (hGH), insulin-like growth factor 1 (IGF-1), vascular endothelial growth factor 165 (VEGF165), keratinocyte growth factor 1 (KGF-1), placental growth factor (PGF), stem cell factor (SCF), and tissue inhibitor of metalloproteinase 1 (TIMP-1). The fusion proteins were expressed in E. coli under the control of T7 promoter at three temperatures (25 °C, 30 °C, and 37 °C). All individual fusion proteins, except for SCF and TIMP-1, were successfully overexpressed in cytoplasmic soluble form at more than one temperature. Further, the original aFGF, IGF-1, EGF, and VEGF165 proteins were cleaved from the fusion partner by TEV protease. Five-liter fed-batch fermentation approaches for the 6HFh8-aFGF (lacking disulfide bonds) and 6HFh8-VEGF165 (a cysteine-rich protein) were devised to obtain the target protein at concentrations of 9.7 g/l and 3.4 g/l, respectively. The two GFs were successfully highly purified (>99% purity). Furthermore, they exerted similar cell proliferative effects as those of their commercial equivalents.Conclusions: We demonstrated that 6HFh8-GF fusion proteins could be overexpressed on a g/l scale in the cytoplasm of E. coli, with the GFs subsequently highly purified and maintaining their biological activity. Hence, the small protein 6HFh8 can be used for efficient mass-production of various GFs.


Sign in / Sign up

Export Citation Format

Share Document