scholarly journals Avian-power line interactions in the Gobi Desert of Mongolia: are mitigation actions effective?

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adrian Orihuela-Torres ◽  
Juan M. Pérez-García ◽  
Zebensui Morales-Reyes ◽  
Lara Naves-Alegre ◽  
José A. Sánchez-Zapata ◽  
...  

Abstract Background Electrocution and collisions on power lines are among the leading causes of non-natural mortality for birds. Power lines are exponentially increasing, particularly in developing countries, but mitigation strategies to prevent bird mortality are questionable. Mongolia combines a recently increased power line network, an abundant raptor population, a dangerous crossarm configuration and a habitat with no natural perches, producing many bird-power line interactions. Our aim is to assess the bird mortality caused by power lines in the Gobi Desert of Mongolia, to determine the factors increasing the risk of bird electrocution, and to evaluate the effectiveness of used retrofitting measures. Methods In July 2019 we covered 132.9 km of 15 kV power lines checking 1092 poles. We also conducted bird transects to record raptor and corvid richness and abundance, to assess species vulnerability to electrocution. Results We recorded 76 electrocuted birds of 7 species. Electrocution rate was 6.96 birds/100 poles. The most affected species were Common Raven (Corvus corax) and Upland Buzzard (Buteo hemilasius), highlighting the electrocution of 5 endangered Saker Falcons (Falco cherrug). By contrast, we only recorded 8 individuals of 5 species colliding with wires, the most affected being Pallas’s Sandgrouse (Syrrhaptes paradoxus). About 76.1% of sampled poles had some mitigation measure. Of these, 96.6% were brush perch deflectors and 3.4% rotating-mirrors perch deterrents. We found differences in electrocution rates among crossarm configurations, with the strain insulator with one jumper being the most lethal. Additionally, we found no correlation between bird abundance and electrocution rates, suggesting that some species are more sensitive to electrocution. Although no differences in total bird electrocution rates were detected between poles with and without perch deterrents, when bird size is considered, deterrents reduced the mortality rate of small birds, while they were ineffective for medium-sized birds. Conclusions Despite the widespread use of perch deterrents in the Mongolian power line network, there is still an alarming electrocution rate. This strategy is ineffective and some mechanisms, such as brush perch deflectors, may increase the electrocution rate for some medium-sized birds. Finally, we propose strategies to minimize the avian electrocution rate in the Gobi Desert.

2019 ◽  
Vol 13 (1) ◽  
pp. 45-59
Author(s):  
Marek Gális ◽  
Michal Ševčík

Abstract Flight observations and carcass searches were carried out along distribution power lines in Slovakia. 77 km of 22 kV and 110 kV lines were marked on a total of 108 sections to evaluate the effectiveness of three types of bird flight diverters (FireFly Bird Diverter, RIBE Bird Flight Diverter and SWAN-FLIGHT Diverter) designed to increase power line visibility. Numbers of carcasses were compared before and after installation of the devices and reaction distances on marked power lines were surveyed. We observed a 93.5% reduction (93 vs. 6) in the number of fatalities under the marked power lines after line marking (06/2016–06/2019) compared to the period before installation (12/2014–02/2016). 2,296 flight reactions were observed and an estimated total of 41,885 individuals (57 bird species belonging to 13 orders) were recorded with their reactions to marked lines in the period 06/2016–06/2019. After installation of bird diverters, there was a low proportion of flight distance observations at the closest distance, i.e. up to 5 m, indicating that birds reacted further away from marked lines. Although we lack flight observations for the period before the installation of diverters, the reactions of birds at greater distances and reduced number of bird victims under marked lines indicate that all tested diverters have a positive effect on reducing the number of avian collisions with power lines.


2017 ◽  
Vol 27 (3) ◽  
pp. 431-439 ◽  
Author(s):  
MIGUEL ÁNGEL FARFÁN ◽  
JESÚS DUARTE ◽  
JOHN E. FA ◽  
RAIMUNDO REAL ◽  
JUAN MARIO VARGAS

SummaryWind power, as an alternative to fossil fuels, is increasingly common, and is expanding worldwide. Wind farms cause mortality of flying animals through collision with moving rotor blades, and from electrocution on associated power lines. Avian mortality rates have been estimated from birds collected under turbines over varying time intervals. However, without adequate and frequent monitoring, dead birds may be removed by scavengers and thus cause an underestimation of fatalities. In this paper, we tested experimentally for possible errors arising in avian mortality caused by the removal of carcasses by scavengers. At two different wind farms and associated power lines in southern Spain, we placed pigeon and quail carcasses to determine their disappearance rate. All dead pigeons were radio-tagged to estimate distances taken by scavengers. We found significant differences in carcass disappearance rates of pigeons and quails, and between wind farms and power lines but not between habitats. All quails and 45% of pigeon carcasses had disappeared by the third and fourteenth day, respectively. Less than half (40%) of the carcasses were found < 100 m from where they were deposited. While scavenging losses may vary according to the location of the wind farm or power line, here we propose a method to estimate correctly the number of fatalities at any wind farm and power line. Using this method, we can improve our understanding of the real impact of wind structures on adjacent bird communities, and adopt appropriate measures to ensure their conservation.


2019 ◽  
Vol 13 (1) ◽  
pp. 61-73
Author(s):  
Ján Šmídt ◽  
Ervín Hapl ◽  
Marek Gális

Abstract Power lines represent an important and increasing worldwide cause of avian mortality due to collisions involving flying birds. One positive and very important fact is that only some parts of potentially dangerous lines are responsible for the majority of killed birds. These sections need to be identified and treated with proper mitigation measures. In this article we present a specially-prepared methodology aimed at classifying power lines according to the risk they present. The identification of power lines with the highest risk of possible bird collision requires easily-accessed biological, technical and landscape information. In addition to analyses of these main inputs, our methodology also evaluates the influence of power line orientation relative to the important migration routes of birds, the effect of nearby tree growth higher than the evaluated power lines, and the complexity of landscape relief. Based on these three additional inputs, it is possible to produce a digitalized map showing with one-meter accuracy the location of power line sections with the high/middle/low mortality risk due to collision for any existing or newly-planned grid. Sections with highest risk should be considered as priority for the implementation of mitigation measures including e.g. installation of bird flight diverters. Our methodology was prepared for 22 kV and 110 kV distribution power lines in Slovakia. It is flexible enough to be applied equally to any geographic conditions and/or bird community, different voltage levels and construction designs of power lines. Our methodology can be applied by ornithologists, nature conservancy organization and power line system operators to implement environmental and cost-effective mitigation measures.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3855
Author(s):  
Arturo Popoli ◽  
Leonardo Sandrolini ◽  
Andrea Cristofolini

In this paper, a strategy for reducing the electromagnetic interferences induced by power lines on metallic pipelines is proposed and numerically investigated. The study considers a set of steel conductors interposed between the power line and the pipeline. Different shapes of conductor cross sections and different magnetic permeabilities are considered, to identify the solution exhibiting the greatest mitigation efficiency for the same amount of material. The investigation is carried out by means of a quasi-3D finite element analysis. Results show that the main mechanism responsible for the mitigation is constituted by the currents induced in the screening conductors by the power line. Hence, a high magnetic permeability can have a detrimental effect since it reduces the skin depth to values below the size of the screening conductor. In this case, a reduction of the screening current and in the mitigation efficiency is observed. Nevertheless, the study shows that the use of strip-shaped screening conductors allows the employment of cheaper magnetic materials without compromising the mitigation efficacy of the screening conductors.


Risk Analysis ◽  
2017 ◽  
Vol 37 (12) ◽  
pp. 2276-2288 ◽  
Author(s):  
Jarry T. Porsius ◽  
Liesbeth Claassen ◽  
Fred Woudenberg ◽  
Tjabe Smid ◽  
Danielle R. M. Timmermans
Keyword(s):  

2021 ◽  
Vol 11 (2) ◽  
pp. 492
Author(s):  
Levente Rácz ◽  
Bálint Németh

Exceeding the electric field’s limit value is not allowed in the vicinity of high-voltage power lines because of both legal and safety aspects. The design parameters of the line must be chosen so that such cases do not occur. However, analysis of several operating power lines in Europe found that the electric field strength in many cases exceeds the legally prescribed limit for the general public. To illustrate this issue and its importance, field measurement and finite element simulation results of the low-frequency electric field are presented for an active 400 kV power line. The purpose of this paper is to offer a new, economical expert system based on dynamic line rating (DLR) that utilizes the potential of real-time power line monitoring methods. The article describes the expert system’s strengths and benefits from both technical and financial points of view, highlighting DLR’s potential for application. With our proposed expert system, it is possible to increase a power line’s safety and security by ensuring that the electric field does not exceed its limit value. In this way, the authors demonstrate that DLR has other potential applications in addition to its capacity-increasing effect in the high voltage grid.


Oryx ◽  
2020 ◽  
pp. 1-10 ◽  
Author(s):  
Ana Teresa Marques ◽  
Ricardo C. Martins ◽  
João Paulo Silva ◽  
Jorge M. Palmeirim ◽  
Francisco Moreira

Abstract Collision with power lines is a major cause of mortality for many bird species. Understanding the biotic and abiotic factors that increase collision risk is therefore important for implementing mitigation measures to minimize mortality, such as power line rerouting or wire marking. Here, we used collision events registered during 2003–2015 along 280 km of transmission power lines in southern Portugal to analyse spatio-temporal patterns and collision risk factors in two sympatric, threatened, and collision-prone species: the great bustard Otis tarda and the little bustard Tetrax tetrax. The occurrence of collisions was not uniform across space and time, and variations could be explained by the species' ecological requirements, distribution patterns and behaviour. Although both species fly considerable distances between areas of suitable habitat, collisions were far more likely in power line sections with > 20% (for the little bustard) or > 50% (for the great bustard) of open farmland habitat in the surroundings. Power line configuration was also important: taller pylons and those with a higher number of wire levels posed a higher risk for both species. Wire marking had a small but significant effect for the little bustard, reducing collisions risk. There was, however, no similar effect for the great bustard, possibly a result of limited data. Mitigation measures should be implemented to prevent bustard collisions, including adequate route planning, ideally avoiding areas with > 20% of open habitat. Line configuration and wire marking are particularly important where such localities cannot be avoided and power lines cross areas with a high proportion of bustard habitat, including outside protected areas.


2021 ◽  
Author(s):  
Werneld Egno Ngongi ◽  
Fortunata Kakwaya ◽  
Justinian Anatory

Abstract Power line networks can be used to increase accessibility of broadband communication services in developing countries. Nevertheless, power line networks are affected by stochastic channel alterations triggered by load connection and disconnection, branched line lengths, branches, etc. This impairment affects the implementation of Broadband Power Line Communication (BPLC) system. This paper therefore proposes an Adaptive Decision Feedback Equalisation (ADFE) technique to overcome the stochastic channel changes in powerline communication channels. An appropriate power-line channel model is selected and channel impulse responses are obtained from the selected channel model. The impulse responses are obtained and used for simulation to analysing the the performance of ADFE technique. The ADFE is simulated and then results are analyzed through comparisons with other equalizers in order to examine its performance. Simulation results prove that the adaptive decision feedback equalizer performs better to overcome the effects of stochastic changes in power-line network compared to other techniques.


2020 ◽  
Vol 17 ◽  
pp. 105-108
Author(s):  
Marko Kaasik ◽  
Sander Mirme

Abstract. The electric power that can be transmitted via high-voltage transmission lines is limited by the Joule heating of the conductors. In the case of coastal wind farms, the wind that produces power simultaneously contributes to the cooling of high-voltage overhead conductors. Ideally this would allow for increased power transmission or decreased dimensions and cost of the conductor wires. In this study we investigate how well the wind speed in coastal wind farms is correlated with wind along a 75 km long 330 kW power line towards inland. It is found that correlations between wind speed in coastal wind farms at turbine height and conductor-level (10 m) are remarkably lower (R=0.39–0.64) than between wind farms at distances up to 100 km from each other (R=0.76–0.97). Dense mixed forest surrounding the power line reduces both local wind speed and the correlations with coastal higher-level wind, thus making the cooling effect less reliable.


Sign in / Sign up

Export Citation Format

Share Document