scholarly journals Experimental investigation on potential use of drilling parameters to quantify rock strength

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
C. R. Lakshminarayana ◽  
Anup Kumar Tripathi ◽  
Samir Kumar Pal

AbstractThe uniaxial compressive strength (UCS) represents the strength of the rock. It frequently requires during the introductory phase of mining projects such as tunneling, rock excavation, blast hole designs, etc. Usually, the determination of UCS of rocks is carrying out in a concerned laboratory. The main drawback of determining the UCS in a laboratory requires at least five core samples of high-grade quality. Many problems and limitations are associated with removing the core, and also preparing the test specimen for UCS is tedious, time-consuming, and expensive. Therefore an attempt is made to develop an efficient indirect method to estimate the UCS of rocks without using the core samples. In this experimental investigation, the drilling response, such as thrust, is gathered by drill tool dynamometer considering the different drill operating parameters. The prediction model is developed with a regression technique using the measured thrust and calculated torque. The prediction capacity and validation of the model are carried out using the standard procedure. The experimental results show that the model could explain the variance in UCS up to 93.60%. RMSE and MAPE values in terms of percentage are 3.49% and 11.27%, respectively. Besides, the model's validation is checked for sandstone and limestone having the UCS 28 MPa and 35 MPa, respectively, and yielded the best prediction results with an error of 8.51% and 8.01% suggesting that the developed model could predict the UCS of sedimentary rock types within acceptable error limit, and reasonably. The correlation of UCS of rocks and drilling specific energy is also tested and found that linear relationship between them with an R2 value of 92.10%.

2021 ◽  
Author(s):  
Mohamed Masoud ◽  
W. Scott Meddaugh ◽  
Masoud Eljaroshi ◽  
Khaled Elghanduri

Abstract The Harash Formation was previously known as the Ruaga A and is considered to be one of the most productive reservoirs in the Zelten field in terms of reservoir quality, areal extent, and hydrocarbon quantity. To date, nearly 70 wells were drilled targeting the Harash reservoir. A few wells initially naturally produced but most had to be stimulated which reflected the field drilling and development plan. The Harash reservoir rock typing identification was essential in understanding the reservoir geology implementation of reservoir development drilling program, the construction of representative reservoir models, hydrocarbons volumetric calculations, and historical pressure-production matching in the flow modelling processes. The objectives of this study are to predict the permeability at un-cored wells and unsampled locations, to classify the reservoir rocks into main rock typing, and to build robust reservoir properties models in which static petrophysical properties and fluid properties are assigned for identified rock type and assessed the existed vertical and lateral heterogeneity within the Palaeocene Harash carbonate reservoir. Initially, an objective-based workflow was developed by generating a training dataset from open hole logs and core samples which were conventionally and specially analyzed of six wells. The developed dataset was used to predict permeability at cored wells through a K-mod model that applies Neural Network Analysis (NNA) and Declustring (DC) algorithms to generate representative permeability and electro-facies. Equal statistical weights were given to log responses without analytical supervision taking into account the significant log response variations. The core data was grouped on petrophysical basis to compute pore throat size aiming at deriving and enlarging the interpretation process from the core to log domain using Indexation and Probabilities of Self-Organized Maps (IPSOM) classification model to develop a reliable representation of rock type classification at the well scale. Permeability and rock typing derived from the open-hole logs and core samples analysis are the main K-mod and IPSOM classification model outputs. The results were propagated to more than 70 un-cored wells. Rock typing techniques were also conducted to classify the Harash reservoir rocks in a consistent manner. Depositional rock typing using a stratigraphic modified Lorenz plot and electro-facies suggest three different rock types that are probably linked to three flow zones. The defined rock types are dominated by specifc reservoir parameters. Electro-facies enables subdivision of the formation into petrophysical groups in which properties were assigned to and were characterized by dynamic behavior and the rock-fluid interaction. Capillary pressure and relative permeability data proved the complexity in rock capillarity. Subsequently, Swc is really rock typing dependent. The use of a consistent representative petrophysical rock type classification led to a significant improvement of geological and flow models.


Author(s):  
M. Boublik ◽  
V. Mandiyan ◽  
S. Tumminia ◽  
J.F. Hainfeld ◽  
J.S. Wall

Success in protein-free deposition of native nucleic acid molecules from solutions of selected ionic conditions prompted attempts for high resolution imaging of nucleic acid interactions with proteins, not attainable by conventional EM. Since the nucleic acid molecules can be visualized in the dark-field STEM mode without contrasting by heavy atoms, the established linearity between scattering cross-section and molecular weight can be applied to the determination of their molecular mass (M) linear density (M/L), mass distribution and radius of gyration (RG). Determination of these parameters promotes electron microscopic imaging of biological macromolecules by STEM to a quantitative analytical level. This technique is applied to study the mechanism of 16S rRNA folding during the assembly process of the 30S ribosomal subunit of E. coli. The sequential addition of protein S4 which binds to the 5'end of the 16S rRNA and S8 and S15 which bind to the central domain of the molecule leads to a corresponding increase of mass and increased coiling of the 16S rRNA in the core particles. This increased compactness is evident from the decrease in RG values from 114Å to 91Å (in “ribosomal” buffer consisting of 10 mM Hepes pH 7.6, 60 mM KCl, 2 m Mg(OAc)2, 1 mM DTT). The binding of S20, S17 and S7 which interact with the 5'domain, the central domain and the 3'domain, respectively, continues the trend of mass increase. However, the RG values of the core particles exhibit a reverse trend, an increase to 108Å. In addition, the binding of S7 leads to the formation of a globular mass cluster with a diameter of about 115Å and a mass of ∽300 kDa. The rest of the mass, about 330 kDa, remains loosely coiled giving the particle a “medusa-like” appearance. These results provide direct evidence that 16S RNA undergoes significant structural reorganization during the 30S subunit assembly and show that its interactions with the six primary binding proteins are not sufficient for 16S rRNA coiling into particles resembling the native 30S subunit, contrary to what has been reported in the literature.


Author(s):  
Yelena I. Shtyrkova ◽  
Yelena I. Polyakova

The results of fossil diatoms investigation from the deltaic sediments are presented. Samples were obtained from the core DM-1 and two Holocene outcrops from the Damchik region of the Astrakhan Nature Reserve. In the core samples eight periods of sedimentation based on diatom analysis were identified: the sediments formed in shallow freshwater basins and deltaic channels. The samples from the outcrops were investigated in much greater detail.


1968 ◽  
Vol 12 ◽  
Author(s):  
R. Goossens

A precise method for the determination of the increment of the  basal area using the PressIer bore. Refering to  previous research showing that the basal area of the corsica pine could be  characterized by an ellips, we present in this paper a precise method for the  determination of the increment of the basal area. In this method we determine  the direction of the maximum diameter, we measure this diameter and we take a  core in one of the points of tangency of the caliper with the measured tree.  The determination of the diameter perpendicular to the maximum diameter  finishes the work wich is to be done in the forest. From the classical  measurements effectuated on the core and from the measured diameters we can  then determine the form (V) and the excentricity (e). Substituting these two  parameters in the formula 2 or 2', we can also calculate the error of a  radius measured on the core with respect to the representative radius, This  error with them allow us to correct the measured value of the minimum or the  maximum radius and we will be able to do a precise determination of the  increment.


2004 ◽  
Vol 59 (8) ◽  
pp. 855-858 ◽  
Author(s):  
Ekkehardt Hahn ◽  
Christoph Jocher ◽  
Thomas Lügger

AbstractThe coordination chemistry of the unsymmetric, aliphatic, tetradentate tripodal ligand N[(CH2CH2NH2)(CH2CH2OH)(CH2CH2CH2OH)] H4-1 with iron chlorides was investigated. The disodium salt of the deprotonated ligand Na2(H2-1) reacts with FeCl3 to yield a yellow precipitate which upon recrystallization from DMSO/CH2Cl2 gives red crystals of the octanuclear iron(III) complex [{FeIIICl(H2-1)}4FeIII4(μ4-O)4Cl4] 2 ・ 4CH2Cl2 containing a central Fe4(μ4-O)4 cubane core. Crystals of 2 ・4DMF were obtained by slow oxidation of the green iron(II) complex obtained from ferrous chloride and Na2(H2-1) after recrystallization from DMF. The structure determination of 2 ・4CH2Cl2 also revealed the presence of the iron(III) oxo cubane core. The core is surrounded by four iron atoms each coordinated by η4-(H2-1)2- and Cl- ligands.


2008 ◽  
Vol 44-46 ◽  
pp. 871-878 ◽  
Author(s):  
Chu Yang Luo ◽  
Jun Jiang Xiong ◽  
R.A. Shenoi

This paper outlines a new technique to address the paucity of data in determining fatigue life and performance based on reliability concepts. Two new randomized models are presented for estimating the safe life and pS-N curve, by using the standard procedure for statistical analysis and dealing with small sample numbers of incomplete data. The confidence level formulations for the safe and p-S-N curve are also given. The concepts are then applied for the determination of the safe life and p-S-N curve. Two sets of fatigue tests for the safe life and p-S-N curve are conducted to validate the presented method, demonstrating the practical use of the proposed technique.


2009 ◽  
Vol 56 (3) ◽  
pp. 408-419 ◽  
Author(s):  
Vincent Barral ◽  
Thierry Poiroux ◽  
JÉrÔme Saint-Martin ◽  
Daniela Munteanu ◽  
Jean-Luc Autran ◽  
...  

Author(s):  
LJ. Tanovic ◽  
P. Bojanic ◽  
R. Puzovic ◽  
S. Klimenko

This paper offers an experimental study of the microcutting mechanisms in marble grinding to aid the optimization of the marble grinding process. The necessity for investigating these mechanisms is dictated by the increased use of marble in many applications and the fact that grinding and polishing processes are the dominant technologies used to meet surface finish requirements in this natural material. The experiments are aimed at the determination of the normal component of the cutting force and of the grain traces in microcutting with a single diamond grain. The investigations carried out make provisions for establishing critical grain penetration and cutting depths and allow the prediction of the normal cutting force component as a function of grain penetration speed and depth.


Sign in / Sign up

Export Citation Format

Share Document