scholarly journals Human impacts on the environment and wildlife in California’s past: Lessons from California archaeology

2021 ◽  
Vol 107 (3) ◽  
pp. 295-319
Author(s):  
Julia Renee Prince-Buitenhuys ◽  
Colleen M. Cheverko ◽  
Eric J. Bartelink ◽  
Veronica Wunderlich ◽  
Kristina Crawford

The long history of human-animal interactions in California prior to European contact is frequently not considered when setting ecological baselines and, by consequence, when planning conservation and management expectations and strategies for native species. This article reviews archaeological perspectives that explore the relationship between human niche construction, plant and wildlife populations, and human health in pre-European contact Central California, with an emphasis on the Central Valley and Delta, the surrounding foothills, and the San Francisco Bay Area. A summary of the archaeological record for Central California is provided, along with how niche construction and related evolutionary based models have been used in prehistoric California. Examples of the influences of human niche construction on flora, fauna, and human health from the archaeological and ethnographic record are then discussed. This information is tied to modern wildlife research and management practices that would serve contemporary fish and wildlife management given that human influences on species “natural” habitats and ecological baselines extends much further into the past than current ecological baselines and wildlife management strategies traditionally recognize.

2021 ◽  
Author(s):  
Nicole Beyer ◽  
Felix Kirsch ◽  
Doreen Gabriel ◽  
Catrin Westphal

Abstract Context Pollinator declines and functional homogenization of farmland insect communities have been reported. Mass-flowering crops (MFC) can support pollinators by providing floral resources. Knowledge about how MFC with dissimilar flower morphology affect functional groups and functional trait compositions of wild bee communities is scarce. Objective We investigated how two morphologically different MFC, land cover and local flower cover of semi-natural habitats (SNH) and landscape diversity affect wild bees and their functional traits (body size, tongue length, sociality, foraging preferences). Methods We conducted landscape-level wild bee surveys in SNH of 30 paired study landscapes covering an oilseed rape (OSR) (Brassica napus L.) gradient. In 15 study landscapes faba beans (Vicia faba L.) were grown, paired with respective control landscapes without grain legumes. Results Faba bean cultivation promoted bumblebees (Bombus spp. Latreille), whereas non-Bombus densities were only driven by the local flower cover of SNH. High landscape diversity enhanced wild bee species richness. Faba bean cultivation enhanced the proportions of social wild bees, bees foraging on Fabaceae and slightly of long-tongued bumblebees. Solitary bee proportions increased with high covers of OSR. High local SNH flower covers mitigated changes of mean bee sizes caused by faba bean cultivation. Conclusions Our results show that MFC support specific functional bee groups adapted to their flower morphology and can alter pollinators` functional trait composition. We conclude that management practices need to target the cultivation of functionally diverse crops, combined with high local flower covers of diverse SNH to create heterogeneous landscapes, which sustain diverse pollinator communities.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1241
Author(s):  
Stanko Vršič ◽  
Marko Breznik ◽  
Borut Pulko ◽  
Jesús Rodrigo-Comino

Earthworms are key indicators of soil quality and health in vineyards, but research that considers different soil management systems, especially in Slovenian viticultural areas is scarce. In this investigation, the impact of different soil management practices such as permanent green cover, the use of herbicides in row and inter-row areas, use of straw mulch, and shallow soil tillage compared to meadow control for earthworm abundance, were assessed. The biomass and abundance of earthworms (m2) and distribution in various soil layers were quantified for three years. Monitoring and a survey covering 22 May 2014 to 5 October 2016 in seven different sampling dates, along with a soil profile at the depth from 0 to 60 cm, were carried out. Our results showed that the lowest mean abundance and biomass of earthworms in all sampling periods were registered along the herbicide strip (within the rows). The highest abundance was found in the straw mulch and permanent green cover treatments (higher than in the control). On the plots where the herbicide was applied to the complete inter-row area, the abundance of the earthworm community decreased from the beginning to the end of the monitoring period. In contrast, shallow tillage showed a similar trend of declining earthworm abundance, which could indicate a deterioration of soil biodiversity conditions. We concluded that different soil management practices greatly affect the soil’s environmental conditions (temperature and humidity), especially in the upper soil layer (up to 15 cm deep), which affects the abundance of the earthworm community. Our results demonstrated that these practices need to be adapted to the climate and weather conditions, and also to human impacts.


2021 ◽  
Vol 53 (3) ◽  
pp. 271-282
Author(s):  
Mónika Sinigla ◽  
Erzsébet Szurdoki ◽  
László Lőkös ◽  
Dénes Bartha ◽  
István Galambos ◽  
...  

AbstractThe maintenance of protected lichen species and their biodiversity in general depends on good management practices based on their distribution and habitat preferences. To date, 10 of the 17 protected lichen species of Hungary have been recorded in the Bakony Mts including the Balaton Uplands region. Habitat preferences of three protected Cladonia species (C. arbuscula, C. mitis and C. rangiferina) growing on underlying rocks of red sandstone, basalt, Pannonian sandstone and gravel were investigated by detailed sampling. We recorded aspect, underlying rock type, soil depth, pH and CaCO3 content, habitat type (as defined by the General National Habitat Classification System Á-NÉR), all species of lichen, bryophyte and vascular plants as well as percentage cover of exposed rock, total bryophytes, lichens, vascular plants and canopy, degree of disturbance and animal impacts. Sporadic populations of these species mostly exist at the top of hills and mountains in open acidofrequent oak forests, but they may occur in other habitats, such as closed acidofrequent oak forests, slope steppes on stony soils, siliceous open rocky grasslands, open sand steppes, wet and mesic pioneer scrub and dry Calluna heaths. Cladonia rangiferina was found to grow beneath higher canopy cover than either C. arbuscula or C. mitis in the Balaton Uplands. Furthermore, there were significant differences in canopy cover between occupied and unoccupied quadrats in the case of all three species. Cladonia rangiferina is a good indicator species of natural habitats in Hungary due to its restricted distribution and low ecological tolerance. These results may lead to the adoption of effective conservation methods (e.g. game exclusion, artificial dispersal) in the future.


2021 ◽  
Vol 13 (2) ◽  
pp. 817
Author(s):  
Ove Eriksson ◽  
Matilda Arnell ◽  
Karl-Johan Lindholm

Infield systems originated during the early Iron Age and existed until the 19th century, although passing many transitions and changes. The core features of infield systems were enclosed infields with hay-meadows and crop fields, and unenclosed outland mainly used for livestock grazing. We examine the transitions and changes of domesticated landscapes with infield systems using the framework of human niche construction, focusing on reciprocal causation affecting change in both culture and environment. A first major transition occurred during the early Middle Ages, as a combined effect of a growing elite society and an increased availability of iron promoted expansion of villages with partly communal infields. A second major transition occurred during the 18th and 19th centuries, due to a then recognized inefficiency of agricultural production, leading to land reforms. In outlands, there was a continuous expansion of management throughout the whole period. Even though external factors had significant impacts as well, human niche construction affected a range of cultural and environmental features regarding the management and structure of domesticated landscapes with infield systems. Thus, niche construction theory is a useful framework for understanding the historical ecology of infield systems.


Botany ◽  
2008 ◽  
Vol 86 (2) ◽  
pp. 129-145 ◽  
Author(s):  
Dana Lepofsky ◽  
Ken Lertzman

Ethnographic literature documents the pervasiveness of plant-management strategies, such as prescribed burning and other kinds of cultivation, among Northwest Peoples after European contact. In contrast, definitive evidence of precontact plant management has been elusive. Documenting the nature and extent of precontact plant-management strategies has relevance to historians, archaeologists, managers, conservationists, forest ecologists, and First Nations. In this paper, we summarize the various lines of evidence that have been, or could be, used to document ancient cultivation in the northwest of North America. We organize this discussion by the ecological consequences of ancient plant-management practices and their documented or potential visibility in the paleo-, neo-ecological, and archaeological records. Our review demonstrates that while finding evidence of ancient plant management can be difficult, such evidence can be found when innovative research methods are applied. Further, when various independent lines of evidence are compiled, reconstructions of past plant-management strategies are strengthened considerably.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 173-185 ◽  
Author(s):  
R. Zornoza ◽  
J. A. Acosta ◽  
F. Bastida ◽  
S. G. Domínguez ◽  
D. M. Toledo ◽  
...  

Abstract. Soil quality (SQ) assessment has long been a challenging issue, since soils present high variability in properties and functions. This paper aims to increase the understanding of SQ through the review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses – soil organic carbon and pH being the most used indicators. The use of nitrogen and nutrient content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, with microbial biomass and enzyme activities being the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish an SQI, based on scoring and weighting of different soil indicators, selected by means of multivariate analyses. The use of multiple linear regressions has been successfully used for forest land use. Urban soil quality has been poorly assessed, with a lack of adoption of SQIs. In addition, SQ assessments where human health indicators or exposure pathways are incorporated are practically inexistent. Thus, further efforts should be carried out to establish new methodologies to assess soil quality not only in terms of sustainability, productivity and ecosystem quality but also human health. Additionally, new challenges arise with the use and integration of stable isotopic, genomic, proteomic and spectroscopic data into SQIs.


BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Shannon E. Pittman ◽  
Ian A. Bartoszek

Abstract Background Dispersal behavior is a critical component of invasive species dynamics, impacting both spatial spread and population density. In South Florida, Burmese pythons (Python bivittatus) are an invasive species that disrupt ecosystems and have the potential to expand their range northward. Control of python populations is limited by a lack of information on movement behavior and vital rates, especially within the younger age classes. We radio-tracked 28 Burmese pythons from hatching until natural mortality for approximately 3 years. Pythons were chosen from 4 clutches deposited by adult females in 4 different habitats: forested wetland, urban interface, upland pine, and agricultural interface. Results Known-fate survival estimate was 35.7% (95% CI = 18% - 53%) in the first 6 months, and only 2 snakes survived 3 years post hatching. Snakes moving through ‘natural’ habitats had higher survival than snakes dispersing through ‘modified’ habitats in the first 6- months post-hatching. Predation was the most common source of mortality. Snakes from the agricultural interface utilized canals and displayed the largest net movements. Conclusions Our results suggest that pythons may have lower survival if clutches are deposited in or near urbanized areas. Alternatively, juvenile pythons could quickly disperse to new locations by utilizing canals that facilitate linear movement. This study provides critical information about behavioral and life history characteristics of juvenile Burmese pythons that will inform management practices.


Sign in / Sign up

Export Citation Format

Share Document