scholarly journals Influence of phytochemicals in piper betle linn leaf extract on wound healing

2015 ◽  
Vol 3 ◽  
pp. 1-8 ◽  
Author(s):  
Le Thi Lien ◽  
Nguyen Thi Tho ◽  
Do Minh Ha ◽  
Pham Luong Hang ◽  
Phan Tuan Nghia ◽  
...  

Abstract Background Wound healing has being extensively investigated over the world. Healing impairment is caused by many reasons including increasing of free-radicals-mediated damage, delaying in granulation tissue formation, reducing in angiogenesis and decreasing in collagen reorganization. These facts consequently lead to chronic wound healing. Piper betle Linn (Betle) leaves have been folklore used as an ingredient of drugs for cutaneous wound treatment. However, the effect of betle leaf on wound healing is not yet well elucidated. In this study, we aimed to investigate the healing efficacy of methanol leaf extract of Piper betle Linn on proliferation of fibroblast NIH3T3 cells as well as full-thickness burn and excision wounds in swiss mice. Methods Scratch wound healing assays were conducted to examine the effects of betle leaf extract on healing activity of fibroblast cells. Burn and excision wounds on swiss mouse skins were created for investigating the wound healing progress caused by the betle leaf extract. Malondialdehyde (MDA) was also evaluated to examine the products of lipid hydroperoxide (LPO) under conditions of with or without betle leaf extract treatment. Results The results of this study showed that Piper betle Linn leaf extract in methanol increased proliferation of NIH3T3 cells and promoted wound healing in vitro and in vivo with both burn wound and excision wound models. In addition, this extract significant decreased level of malondialdehyde (MDA) in liver of treated-mice compared with that in non-treated mice. Conclusions Our results suggest that Piper betle Linn can be used as an ingredient in developing natural origin drugs for treatment of cutaneous wounds.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Nitin K. Upadhyay ◽  
Ratan Kumar ◽  
M. S. Siddiqui ◽  
Asheesh Gupta

The present investigation was undertaken to evaluate the healing efficacy of lyophilized aqueous leaf extract of Sea buckthorn (Hippophae rhamnoidesL., family Elaeagnaceae) (SBT) and to explore its possible mechanism of action on experimental burn wounds in rats. The SBT extract, at various concentrations, was applied topically, twice daily for 7 days. Treatment with silver sulfadiazine (SSD) ointment was used as reference control. The most effective concentration of the extract was found to be 5.0% (w/w) for burn wound healing and this was further used for detailed study. The SBT-treated group showed faster reduction in wound area in comparison with control and SSD-treated groups. The topical application of SBT increased collagen synthesis and stabilization at the wound site, as evidenced by increase in hydroxyproline, hexosamine levels and up-regulated expression of collagen type-III. The histological examinations and matrix metalloproteinases (MMP-2 and -9) expression also confirmed the healing efficacy of SBT leaf extract. Furthermore, there was significant increase in levels of endogenous enzymatic and non-enzymatic antioxidants and decrease in lipid peroxide levels in SBT-treated burn wound granulation tissue. The SBT also promoted angiogenesis as evidenced by anin vitrochick chorioallantoic membrane model andin vivoup-regulated vascular endothelial growth factor (VEGF) expression. The SBT leaf extract had no cytotoxic effect on BHK-21 cell line. In conclusion, SBT aqueous leaf extract possesses significant healing potential in burn wounds and has a positive influence on the different phases of wound repair.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Zahra Farshadzadeh ◽  
Maryam Pourhajibagher ◽  
Behrouz Taheri ◽  
Alireza Ekrami ◽  
Mohammad Hossein Modarressi ◽  
...  

Abstract Background The global emergence of Acinetobacter baumannii resistance to most conventional antibiotics presents a major therapeutic challenge and necessitates the discovery of new antibacterial agents. The purpose of this study was to investigate in vitro and in vivo anti-biofilm potency of dermcidin-1L (DCD-1L) against extensively drug-resistant (XDR)-, pandrug-resistant (PDR)-, and ATCC19606-A. baumannii. Methods After determination of minimum inhibitory concentration (MIC) of DCD-1L, in vitro anti-adhesive and anti-biofilm activities of DCD-1L were evaluated. Cytotoxicity, hemolytic activity, and the effect of DCD-1L treatment on the expression of various biofilm-associated genes were determined. The inhibitory effect of DCD-1L on biofilm formation in the model of catheter-associated infection, as well as, histopathological examination of the burn wound sites of mice treated with DCD-1L were assessed. Results The bacterial adhesion and biofilm formation in all A. baumannii isolates were inhibited at 2 × , 4 × , and 8 × MIC of DCD-1L, while only 8 × MIC of DCD-1L was able to destroy the pre-formed biofilm in vitro. Also, reduce the expression of genes involved in biofilm formation was observed following DCD-1L treatment. DCD-1L without cytotoxic and hemolytic activities significantly reduced the biofilm formation in the model of catheter-associated infection. In vivo results showed that the count of A. baumannii in infected wounds was significantly decreased and the promotion in wound healing by the acceleration of skin re-epithelialization in mice was observed following treatment with 8 × MIC of DCD-1L. Conclusions Results of this study demonstrated that DCD-1L can inhibit bacterial attachment and biofilm formation and prevent the onset of infection. Taking these properties together, DCD-1L appears as a promising candidate for antimicrobial and anti-biofilm drug development.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1153
Author(s):  
Verena Schneider ◽  
Daniel Kruse ◽  
Ives Bernardelli de Mattos ◽  
Saskia Zöphel ◽  
Kendra-Kathrin Tiltmann ◽  
...  

Burns affect millions every year and a model to mimic the pathophysiology of such injuries in detail is required to better understand regeneration. The current gold standard for studying burn wounds are animal models, which are under criticism due to ethical considerations and a limited predictiveness. Here, we present a three-dimensional burn model, based on an open-source model, to monitor wound healing on the epidermal level. Skin equivalents were burned, using a preheated metal cylinder. The healing process was monitored regarding histomorphology, metabolic changes, inflammatory response and reepithelialization for 14 days. During this time, the wound size decreased from 25% to 5% of the model area and the inflammatory response (IL-1β, IL-6 and IL-8) showed a comparable course to wounding and healing in vivo. Additionally, the topical application of 5% dexpanthenol enhanced tissue morphology and the number of proliferative keratinocytes in the newly formed epidermis, but did not influence the overall reepithelialization rate. In summary, the model showed a comparable healing process to in vivo, and thus, offers the opportunity to better understand the physiology of thermal burn wound healing on the keratinocyte level.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Le Hang Dang ◽  
Thi Hiep Nguyen ◽  
Ha Le Bao Tran ◽  
Vu Nguyen Doan ◽  
Ngoc Quyen Tran

Burn wound healing is a complex multifactorial process that relies on coordinated signaling molecules to succeed. Curcumin is believed to be a potent antioxidant and anti-inflammatory agent; therefore, it can prevent the prolonged presence of oxygen free radicals which is a significant factor causing inhabitation of optimum healing process. This study describes an extension of study about the biofunctional nanocomposite hydrogel platform that was prepared by using curcumin and an amphiphilic chitosan-g-pluronic copolymer specialized in burn wound healing application. This formular (nCur-CP, nanocomposite hydrogel) was a free-flowing sol at ambient temperature and instantly converted into a nonflowing gel at body temperature. In addition, the storage study determined the great stability level of nCur-CP in long time using UV-Vis and DLS. Morphology and distribution of nCur in its nanocomposite hydrogels were observed by SEM and TEM, respectively. In vitro studies suggested that nCur-CP exhibited well fibroblast proliferation and ability in antimicrobacteria. Furthermore, second- and third-degree burn wound models were employed to evaluate the in vivo wound healing activity of the nCur-CP. In the second-degree wound model, the nanocomposite hydrogel group showed a higher regenerated collagen density and thicker epidermis layer formation. In third degree, the nCur-CP group also exhibited enhancement of wound closure. Besides, in both models, the nanocomposite material-treated groups showed higher collagen content, better granulation, and higher wound maturity. Histopathologic examination also implied that the nanocomposite hydrogel based on nanocurcumin and chitosan could enhance burn wound repair. In conclusion, the biocompatible and injectable nanocomposite scaffold might have great potential to apply for wound healing.


2015 ◽  
Vol 2 (1) ◽  
pp. 458
Author(s):  
Rina Sri Kasiamdari ◽  
Umi Sangadah

<p>In Indonesia, strawberry is one of fruits which has high economic values. The growth of strawberry has increased significantly, but its productivity is still low because of disease attack. Disease that attacks strawberry started from nursery to post harvest is anthracnose that can be caused by Colletotrichum spp. Control efforts of anthracnose disease up to now has been done with application of synthetic chemicals which are known to be hazardous to the environment and human health. Betel leaf (Piper betle L.) is natural plant that potentially used as phytofungicide. Essential oils on betel leaf extract is reported can decrease the growth of pathogenic fungi. The objectives of the research were to identify Colletotrichum spp. in strawberry fruit that showed anthracnose symptoms, to test the potency of betel leaf extract as phytofungicide, and to evaluate the effect of betel leaf extract in inhibiting infection and disease severity of Colletotrichum in strawberry. Samples were taken from strawberry nursery in Magelang, Indonesia. The disease symptoms were isolated on Potato Dextrose Agar, followed by identification of fungal colony and morphology by semi permanent slide preparation. Betel leaves were extracted with water to get a concentration of 20, 40, 60, 80 and 100%, respectively. An in vitro experiment was done to evaluate the inhibition rate of betel leaf extract to the growth of Colletotrichum spp. colony. An in vivo experiment was done by submersion of strawberry to betel leaf extract before (preventive method) and after antrachnose attack (curative method), then disease infection and disease severity were measured after 7 days. The result of the research showed that anthracnose disease in strawberry was caused by C. gloeosporioides (Penz.). Twenty percent of betel leaf extract in an in vitro test had potential as phytofungicide and concentration of 100% betel leaf extract was the best concentration to inhibit the growth of C. gloeosporioides (Penz.) colony by 70.26±0,61%. In an in vivo experiment, submersion of strawberry before pathogen infection (preventive) with 100% betel leaf extract decreased disease infection by 40% and disease severity by 16%, respectively. While treatment of submersion of strawberry after pathogen infection (curative) decreased disease infection by 33,4% and disease severity by 17%. </p><p>Keywords: strawberry, anthrachnose, disease, betel leaf</p>


2015 ◽  
Vol 221 (4) ◽  
pp. e121 ◽  
Author(s):  
Kameron Rezzadeh ◽  
Situo Zhou ◽  
Akishige Hokugo ◽  
Zheyu Zhang ◽  
Luis A. Segovia ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Rupesh Thakur ◽  
Nitika Jain ◽  
Raghvendra Pathak ◽  
Sardul Singh Sandhu

Wounds are the result of injuries to the skin that disrupt the other soft tissue. Healing of a wound is a complex and protracted process of tissue repair and remodeling in response to injury. Various plant products have been used in treatment of wounds over the years. Wound healing herbal extracts promote blood clotting, fight infection, and accelerate the healing of wounds. Phytoconstituents derived from plants need to be identified and screened for antimicrobial activity for management of wounds. Thein vitroassays are useful, quick, and relatively inexpensive. Small animals provide a multitude of model choices for various human wound conditions. The study must be conducted after obtaining approval of the Ethics Committee and according to the guidelines for care and use of animals. The prepared formulations of herbal extract can be evaluated by various physicopharmaceutical parameters. The wound healing efficacies of various herbal extracts have been evaluated in excision, incision, dead space, and burn wound models.In vitroandin vivoassays are stepping stones to well-controlled clinical trials of herbal extracts.


Sign in / Sign up

Export Citation Format

Share Document