scholarly journals Silybum marianum ethanolic extract: in vitro effects on protoscolices of Echinococcus granulosus G1 strain with emphasis on other Iranian medicinal plants

2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Ali Taghipour ◽  
Fatemeh Ghaffarifar ◽  
John Horton ◽  
Abdolhossein Dalimi ◽  
Zohreh Sharifi

Abstract Background Cystic echinococcosis (CE), is a parasitic zoonosis caused by Echinococcus granulosus (E. granulosus) larvae in liver and lungs of both humans and animals. Surgical intervention is the mainstay for CE treatment, using scolicidal agents that inactivate live protoscolices. This study evaluated the scolicidal effects of Silybum marianum ethanolic extract and its combination with albendazole in vitro for the first time. Moreover, in a literature review, we investigated the effects of a wide range of Iranian medicinal plants on protoscolices of E. granulosus. Methods S. marianum ethanolic extract was prepared and high-performance liquid chromatography (HPLC) analysis was used to establish the proportions of its component compounds in the extract. Cytotoxicity was evaluated in mouse macrophage cells (J774A.1 cell line) using MTT method. Next, the scolicidal activity of the extract alone and combined with albendazole was tested as triplicate at various concentrations incubated for 5, 10, 20, 30, and 60 min. Finally, protoscolex viability was determined using 0.1% eosin as a vital stain. PCR–RFLP and DNA sequencing techniques were used to characterize the genotype of E. granulosus. Results HPLC analysis showed that S. marianum ethanolic extract contained mostly silydianin (14.41%), isosilybin A (10.50%), and silychristin (10.46%). The greatest scolicidal effects were obtained with the combination of S. marianum with albendazole (79%), S. marianum ethanolic extract alone (77%) and albendazole (69%), at a concentration of 500 μg/ml for 60 min, respectively (P < 0.05). Molecular analysis showed that all the cysts used were G1 genotype. Conclusion The data suggest that S. marianum ethanolic extract is a potential scolicide in vitro; however, further investigations are required to determine its efficacy in vivo.

2021 ◽  
pp. 088391152110142
Author(s):  
Nima Firouzeh ◽  
Touba Eslaminejad ◽  
Reza Shafiei ◽  
Ashkan Faridi ◽  
Majid Fasihi Harandi

Cystic Echinococcosis (CE) is a parasitic infection caused by the larval stage of Echinococcus granulosus. Exploring safe and effective scolicidal agents for the surgery is an urgent need for the successful treatment of CE. This study aimed to determine scolicidal activity of the synthesized chitosan nanoparticles. Physicochemical properties of synthesized nanoparticles were determined by using DLS, FTIR, and SEM. Different concentrations of chitosan nanoparticles from 125 to 1000 μg/ml were examined at different incubation times (10, 60, 120, and 180 min). Scolicidal and cytotoxic activity of chitosan nanoparticles were confirmed by eosin exclusion and hemolysis activity tests. FTIR spectra, zeta potential (+42 ± 2.08) and PDI (0.388 ± 0.034) value revealed that the chitosan nanoparticles were synthesized. Significant differences among the scolicidal effects of chitosan nanoparticles were observed in comparison to the control treatments and highest scolicidal activity was observed at 1000 μg/ml after 180 min exposure time. Hemolytic activity was not significant at all concentrations of chitosan nanoparticles. Our findings support the hypothesis that Chitosan nanoparticles have the potential to be a safe and efficient scolicidal agent candidate at very low concentrations and in a wide range of exposure time. Further in vivo studies are recommended to evaluate chitosan nanoparticle efficacy before clinical application.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Razika Zeghir-Bouteldja ◽  
Manel Amri ◽  
Saliha Aitaissa ◽  
Samia Bouaziz ◽  
Dalila Mezioug ◽  
...  

Hydatidosis is characterized by the long-term coexistence of larvaEchinococcus granulosusand its host without effective rejection. Previous studies demonstrated nitric oxide (NO) production (in vivo and in vitro) during hydatidosis. In this study, we investigated the direct in vitro effects of NO species: nitrite (NO2−), nitrate (NO3−) and peroxynitrite (ONOO−) on protoscolices (PSCs) viability and hydatid cyst layers integrity for 24 hours and 48 hours. Our results showed protoscolicidal activity ofNO2−andONOO−24 hours and 3 hours after treatment with 320 μM and 80 μM respectively. Degenerative effects were observed on germinal and laminated layers. The comparison of the in vitro effects of NO species on the PSCs viability indicated thatONOO−is more cytotoxic thanNO2−. In contrast,NO3−has no effect. These results suggest possible involvement ofNO2−andONOO−in antihydatic action and point the efficacy of these metabolites as scolicidal agents.


1983 ◽  
Vol 29 (3) ◽  
pp. 466-469 ◽  
Author(s):  
D M Nathan ◽  
T B Francis ◽  
J L Palmer

Abstract We investigated the in vivo and in vitro effects of aspirin on several clinical assays of glycosylated hemoglobin. Acetylation of hemoglobin falsely increased the glycosylated hemoglobin fraction measured by "high-performance" liquid chromatography and electrophoresis, but isoelectric focusing and colorimetric techniques differentiated between acetylated and glycosylated fractions. Aspirin ingestion may result in an apparent increase in glycosylated hemoglobin measured with common clinical assays.


BioMedicine ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 11 ◽  
Author(s):  
Yuh-Tzy Lin ◽  
Wei-Shih Huang ◽  
Huei-Yann Tsai ◽  
Min-Min Lee ◽  
Yuh-Fung Chen

Background: Paeoniflorin (PF) possesses several effects such as analgesic, the anti-spasmodic effect on smooth muscle. It protects the cardiovascular system and reveals the neuroprotective effect on cerebral ischemia. Monoamine system has been identified to have complex regulatory effects in pain signaling. There are no reports regarding the impact of PF on monoamine levels in the rodent brain by microdialysis. In this study, the effects of PF on monoamines and their metabolites in the rodent brain using in vivo microdialysis and in vitro high performance liquid chromatography (HPLC) analysis. Methods: Male S.D. rats were anesthetized, fixed onto the stereotaxic instrument to identify the positions of corpus striatum and cerebral cortex. Drilled a hole in the skull of anesthetic rats and proceeded microdialysis, and gave PF (100 μg, i.c.v.). Collected the dialysate and the concentration of monoamines and their metabolites in dialysate and analyzed with HPLC-ECD. Male ICR mice were administered with PF (96 μg, i.c.v.) and with Ringer solution as a control. After 20 mins of administration, the mice were cut off the brain immediately and separated into eight regions according to the method of Glowinski. Added extraction solution to each region, homogenized and extracted for further procedure. The extract was centrifuged, sucked the transparent layer and centrifuged once more. The transparent layer was filtered with a 0.22 μm nylon filter and analyzed with HPLC-ECD (electrochemical detection). Results: PF increased the content of DOPAC and NE in the cortex, and increased the content of NE and decreased the content of 5-HT in the medulla of the homogenized mice brain tissue. By microdialysis, PF increased the content of DOPAC and 5-HIAA in anesthetic rat cortex and expanded the content of DOPAC, HVA, and 5-HIAA in anesthetic rat striatum. Conclusions: It reveals that PF could activate the release of monoamines and increase their metabolites in the rodent brain.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Qi Ye ◽  
Su-Juan Wang ◽  
Jian-Yu Chen ◽  
Khalid Rahman ◽  
Hai-Liang Xin ◽  
...  

Hypertrophic scar is a complication of wound healing and has a high recurrence rate which can lead to significant abnormity in aesthetics and functions. To date, no ideal treatment method has been established. Meanwhile, the underlying mechanism of hypertrophic scarring has not been clearly defined. Although a large amount of scientific research has been reported on the use of medicinal plants as a natural source of treatment for hypertrophic scarring, it is currently scattered across a wide range of publications. Therefore, a systematic summary and knowledge for future prospects are necessary to facilitate further medicinal plant research for their potential use as antihypertrophic scar agents. A bibliographic investigation was accomplished by focusing on medicinal plants which have been scientifically testedin vitroand/orin vivoand proved as potential agents for the treatment of hypertrophic scars. Although the chemical components and mechanisms of action of medicinal plants with antihypertrophic scarring potential have been investigated, many others remain unknown. More investigations and clinical trials are necessary to make use of these medical plants reasonably and phytotherapy is a promising therapeutic approach against hypertrophic scars.


Author(s):  
Delshad Hesami ◽  
Fatemeh Ghaffarifar ◽  
Abdolhossein Dalimi ◽  
Mohammad Saaid Dayer ◽  
Vahid Nasiri ◽  
...  

Background: The extract of myrtle plant contains polyphenolic compounds that show antibacterial, antiviral, and anti-parasitic properties. We aimed to investigate the therapeutic effect of aqueous and ethanolic myrtle extract against leishmaniasis caused by L. major in vivo and in vitro conditions. Methods: This study was carried out in Tarbiat Modares University, Tehran, Iran in 2018. Aqueous and ethanolic extract of myrtle plant at 6.25 to 400 mg/ml concentrations were tested on Leishmania major promastigotes, non-infected macrophages, and macrophages infected with amastigotes in vitro using counting, MTT and flow cytometry techniques. Then, BALB/c mice were treated with ethanolic, aqueous and a mixture of both extracts of myrtle plant. The treatment was carried out for four weeks. Then, the effectiveness of the herbal medicine was assessed by measuring wounds diameters, mice weights and their mortality rate on weekly basis. Results: The IC50 values of aqueous and ethanolic extracts for promastigotes were 7.86 and 11.66 μg/mL respectively. The IC50 values of the aqueous and ethanolic extracts for amastigotes were 12.5 and 47.2 μg/mL respectively. Flow cytometry indicates 62.88% and 60.16% apoptosis induced by ethanolic and aqueous extract of myrtle plant respectively. The lowest parasitic load was seen in the group treated with ethanolic extract. Conclusion: The lesion sizes for treated groups with extracts were similar to those treated with glucantime. Oral administration instead of injection is another advantage of myrtle plant over glucantime, which makes the herb easy and more practical.


2007 ◽  
Vol 37 (1) ◽  
pp. 99-102 ◽  
Author(s):  
Sabrina Kelly Reis de Morais ◽  
Suniá Gomes Silva ◽  
Cíntia Nicácio Portela ◽  
Sergio Massayoshi Nunomura ◽  
Etienne Louis Jacques Quignard ◽  
...  

Tabebuia incana A.H. Gentry (Bignoniaceae) is a tree from the Brazilian Amazon having medicinal uses and is one several Tabebuia spp. known as pau d'arco or palo de arco in this region. Fractionation of the bark ethanolic extract afforded a mixture of 5 and 8-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-diones (1 and 2, respectively) identified on the basis of nuclear magnetic resonance (NMR), infrared (IR) and mass (MS) spectra, whose in vitro antimalarial and antitumor activity have been shown previously. This is the first study on T. incana bark, and 2 are described in this species for the first time. Also, high performance liquid chromatography (HPLC) analysis of T. incana bark tea revealed the presence of the 1 + 2 mixture peak corresponding to a concentration in the range 10-6-10-5 M. The chromatograms of teas prepared from commercial pau d' arco and T. incana bark were also studied and the presence of the 1 + 2 peak has potential for quality control of commercial plant materials.


2018 ◽  
Vol 13 (4) ◽  
pp. 343 ◽  
Author(s):  
Mohammad Soukhtanloo ◽  
Mozhdeh Iranmanesh ◽  
Reza Mohebbati ◽  
Fatemeh Forouzanfar ◽  
MostafaKarimi Roshan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document