scholarly journals 3D printing in neurosurgery education: a review

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Grace M. Thiong’o ◽  
Mark Bernstein ◽  
James M. Drake

Abstract Objectives The objectives of this manuscript were to review the literature concerning 3D printing of brain and cranial vault pathology and use these data to define the gaps in global utilization of 3D printing technology for neurosurgical education. Methods Using specified criteria, literature searching was conducted to identify publications describing engineered neurosurgical simulators. Included in the study were manuscripts highlighting designs validated for neurosurgical skill transfer. Purely anatomical designs, lacking aspects of surgical simulation, were excluded. Eligible manuscripts were analyzed. Data on the types of simulators, representing the various modelled neurosurgical pathologies, were recorded. Authors’ countries of affiliation were also recorded. Results A total of thirty-six articles, representing ten countries in five continents were identified. Geographically, Africa as a continent was not represented in any of the publications. The simulation-modelling encompassed a variety of neurosurgical subspecialties including: vascular, skull base, ventriculoscopy / ventriculostomy, craniosynostosis, skull lesions / skull defects, intrinsic brain tumor and other. Finally, the vascular and skull base categories together accounted for over half (52.8 %) of the 3D printed simulated neurosurgical pathology. Conclusions Despite the growing body of literature supporting 3D printing in neurosurgical education, its full potential has not been maximized. Unexplored areas of 3D printing for neurosurgical simulation include models simulating the resection of intrinsic brain tumors or of epilepsy surgery lesions, as these require complex models to accurately simulate fine dissection techniques. 3D printed surgical phantoms offer an avenue for the advancement of global-surgery education initiatives.

Author(s):  
Dino Zammit ◽  
Tyler Safran ◽  
Nirros Ponnudurai ◽  
Mehrad Jaberi ◽  
Liang Chen ◽  
...  

Abstract Background Rhinoplasty is a complex procedure that requires meticulous planning and precise execution. Plastic surgeons involved in teaching residents must balance a trainee’s hands-on experience while ensuring appropriate execution of difficult maneuvers. Surgical simulation, a field of growing importance with the shift towards competency-based education, may aid in trainee skill development. Through the concept of deliberate practice, the authors looked to explore the utility and economics of 3-dimensional (3D) printing technology to develop a step-specific rhinoplasty simulator. Objectives The main objective of this study was to address rhinoplasty skills previously identified as “learning areas of weakness” and develop a low-cost, step-specific simulator to help rhinoplasty teaching. Methods A patient’s facial bones, upper and lower lateral cartilages, and septum were segmented from a computed tomography scan and rendered in 3D format. This was 3D printed utilizing Ultimaker Polylactic filament with a polyvinyl acetate dissolvable support for bone, a mixture of Rigur 450 and Tango plus polyjet material for cartilage, and Smooth-On Dragon Skin for skin. Results A modular simulator was developed with 3 separate, interchangeable components with a perfect fit design. The simulator allowed for deliberate practice of the 5 rhinoplasty learning areas of weakness, with a maximal recurring cost of $75 CAD. Conclusions Through the employment of 3D printing, a low-cost, maneuver-specific rhinoplasty simulator reinforcing deliberate practice was developed. This concept of simulation-based deliberate practice may be of increasing interest when considering the implementation of competency-based curricular standards in plastic surgery education.


2019 ◽  
Vol 8 (7) ◽  
pp. 990 ◽  
Author(s):  
Catalina Lupulescu ◽  
Zhonghua Sun

The purpose of this systematic review is to collate and analyse the current literature which examines clinical applications of 3D printing for renal disease, alongside cost and time duration factors associated with the printing process. A comprehensive search of the literature was performed across five different databases to identify studies that qualitatively and quantitatively assessed the value of 3D-printed kidney models for renal disease. Twenty-seven studies met the selection criteria for inclusion in the review. Twenty-five were original studies, and two were case reports. Of the 22 studies reporting a qualitative evaluation, the analysis of findings demonstrated the value of the 3D-printed models in areas of clinician and patient education, and pre-surgical simulation for complex cases of renal disease. Of five studies performing a quantitative analysis, the analysis of results displayed a high level of spatial and anatomical accuracy amongst models, with benefits including reducing estimated blood loss and risk of intra-operative complications. Fourteen studies evaluated manufacturing costs and time duration, with costs ranging from USD 1 to 1000 per model, and time duration ranging from 15 min to 9 days. This review shows that the use of customised 3D-printed models is valuable in the education of junior surgeons as well as the enhancement of operative skills for senior surgeons due to a superior visualisation of anatomical networks and pathologic morphology compared to volumetric imaging alone. Furthermore, 3D-printed kidney models may facilitate interdisciplinary communication and decision-making regarding the management of patients undergoing operative treatment for renal disease. It cannot be suggested that a more expensive material constitutes a higher level of user-satisfaction and model accuracy. However, higher costs in the manufacturing of the 3D-printed models reported, on average, a slightly shorter time duration for the 3D-printing process and total manufacturing time.


Author(s):  
Sanjeev Chopra ◽  
Ashim Kumar Boro ◽  
Virendra Deo Sinha

AbstractThree-dimensional (3D) printing technology in neurosurgery has gained popularity nowadays. Skull base contains many major neurovascular structures in a confined space, along with anatomical variations making surgical approaches to this region challenging. 3D-printed model of skull base tumors consists of the patient's bony skull base, actual tumor dimensions, and surrounding major neurovascular structures. We included a total number of five patients with skull base tumors (one case of planum sphenoidale meningioma, two cases of sellar tumor with suprasellar extension, and two cases of cerebellopontine angle tumor) and 3D-printed tumor model of each of them. These models were used for preoperative simulation and served as very true to life training tool. These help in increasing the efficacy of the surgeon, improves surgical safety and ergonomics. They were also used for patient counselling, educating about the disease, the surgical procedure, and associated risks.


2021 ◽  
Vol 23 (2) ◽  
pp. 34-43
Author(s):  
I. S. Brattsev ◽  
O. V. Smetanina ◽  
K. S. Yashin ◽  
R. O. Gorbatov ◽  
A. Yu. Ermolaev ◽  
...  

Introduction. Every year, there is an increase in the number of operations performed using personalized cranioplasts, which are made with additive 3D printing technologies. They allow surgical intervention, taking into account the characteristics of the shape of the patient's skull. This is especially important when closing large and complex defects extending from the cranial vault to the bones of the facial skeleton. One of the innovative applications of additive technologies in cranioplasty is the creation of implants, preformed based on individual 3D-printed models. However, no preliminary estimates of the results of treatment of patients using the traditional methods of cranial implants and individualized modeling methods were found in the available literary sources.The study objective is to compare the results of treatment using cranioplasts, preformed based on individual 3D-printed skull models and using traditional intraoperative modeling.Materials and methods. A study of 50 patients with post-craniotomy defects of the skull. All patients have undergone cranioplasty. Depending on the technique of individualization of the cranial implants, patients were divided into 2 groups: 1st - using individual 3D-printed models (n = 32), 2nd - traditional intraoperative modeling (n = 18).Results. Statistically, the groups differed significantly in terms of the duration of the intraoperative stage of cranioplasty, postoperative and total hospital stay, indicators of symmetry and financial costs. No differences were found in the duration of the preoperative hospital stay, the number of implant fixation points, the volume of intraoperative blood loss and the quality of life according to the SF-36. The first group (6.25 %) in comparison with the second (16.7 %) had a smaller number of postoperative complications.Conclusion. Modern 3D printing technologies recreate bone models based on patients' individual characteristics, thereby providing time for careful planning of the operation, even at the outpatient stage. The results of the study showed that the usage of cranioplasts preformed with 3D-printed models provides precise closure of post-craniotomy defects, better restoration of the skull contours, and a significant reduction in the duration of the cranioplasty stage. The use of the technology does not lead to a significant increase in the cost of treatment using traditional intraoperative modeling.


Author(s):  
MT Walsh ◽  
OH Khan

Background: Due to increasingly limited access to cadavers and first-hand operative experience, there is an increasing need for innovative modalities in neurosurgical education. Recent developments in computer modelling, virtual/augmented reality, and video game technology have created new opportunities for novel teaching tools. We set out to develop a library of 3D models of normal anatomy and pathologic states for use in conjunction with an interactive simulated environment and 3D printing for teaching of neurosurgical residents. Methods: Anatomically accurate 3D models were developed using CT/MRI data from multiple patients using open source segmentation and 3D animation software. An interactive simulated environment was then created using a 3D game engine and used in conjunction with a virtual/augmented reality system. 3D models were also used to for 3D printing. Results: 3D models and an interactive simulated environment were used in conjunction with various viewing modalities, including 3D video, 360 video, and virtual reality headsets, as well as 3D printing. These teaching tools were successfully implemented in neurosurgery didactic teaching sessions and in the skull base lab. Additional benefits were seen with patient engagement and marketing. Conclusions: 3D modeling and animation show considerable promise for neurosurgical education, with additional benefits for patient engagement, marketing, and social media.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 305
Author(s):  
Linda Ritzen ◽  
Vincenzo Montano ◽  
Santiago J. Garcia

The use of self-healing (SH) polymers to make 3D-printed polymeric parts offers the potential to increase the quality of 3D-printed parts and to increase their durability and damage tolerance due to their (on-demand) dynamic nature. Nevertheless, 3D-printing of such dynamic polymers is not a straightforward process due to their polymer architecture and rheological complexity and the limited quantities produced at lab-scale. This limits the exploration of the full potential of self-healing polymers. In this paper, we present the complete process for fused deposition modelling of a room temperature self-healing polyurethane. Starting from the synthesis and polymer slab manufacturing, we processed the polymer into a continuous filament and 3D printed parts. For the characterization of the 3D printed parts, we used a compression cut test, which proved useful when limited amount of material is available. The test was able to quasi-quantitatively assess both bulk and 3D printed samples and their self-healing behavior. The mechanical and healing behavior of the 3D printed self-healing polyurethane was highly similar to that of the bulk SH polymer. This indicates that the self-healing property of the polymer was retained even after multiple processing steps and printing. Compared to a commercial 3D-printing thermoplastic polyurethane, the self-healing polymer displayed a smaller mechanical dependency on the printing conditions with the added value of healing cuts at room temperature.


Author(s):  
Zhicheng Rong ◽  
Chang Liu ◽  
Yingbin Hu

Abstract In recent years, more and more attentions have been attracted on integrating three-dimensional (3D) printing with fields (such as magnetic field) or innovating new methods to reap the full potential of 3D printing in manufacturing high-quality parts and processing nano-scaled composites. Among all of newly innovated methods, four-dimensional (4D) printing has been proved to be an effective way of creating dynamic components from simple structures. Common feeding materials in 4D printing include shape memory hydrogels, shape memory polymers, and shape memory alloys. However, few attempts have been made on 4D printing of ceramic materials to shape ceramics into intricate structures, owing to ceramics’ inherent brittleness nature. Facing this problem, this investigation aims at filling the gap between 4D printing and fabrication of complex ceramic structures. Inspired by swelling-and-shrinking-induced self-folding, a 4D printing method is innovated to add an additional shape change of ceramic structures by controlling ZrO2 contents and patterns. Experimental results evidenced that by deliberately controlling ZrO2 contents and patterns, 3D-printed ceramic parts would undergo bending and twisting during the sintering process. To demonstrate the capabilities of this method, more complex structures (such as a flower-like structure) were fabricated. In addition, functional parts with magnetic behaviors were 4D-printed by incorporating iron into the PDMS-ZrO2 ink.


2018 ◽  
Vol 1 (Supplement) ◽  
pp. 40
Author(s):  
E. Liciu ◽  
B. Frumuşeanu ◽  
B.M. Popescu ◽  
D.C. Florea ◽  
L. Niculescu ◽  
...  

Abstract Introduction. Among the cases of malignant tumors, gathering 30% of them, the most frequent is the osteosarcoma. It occurs especially in children and young adults, the mean age being 14 years old. The treatment consists initially in neoadjuvant chemotherapy, followed by the surgical removal of the tumor. Due to aggressive malignant features (rapid increase in size, tendency to invade surrounding tissues, variable location), in multiple cases, the surgical treatment of osteosarcoma becomes a true challenge. Materials and methods. Nowadays, it is possible to create 3D printed models, by using CT and MRI, which are superior to the 3D graphical reconstructions. The 3D printing technique facilitates the production of these 1:1 scale printed models that faithfully embody the patient’s particular features concerning the anatomic pathology. The benefits gained from using such a modern tool allow the orthopedic surgeons to establish the measurements of a precise resection and to simulate the surgical maneuvers, as part of an elaborated modern surgical planning. Results. In this article, we presented the case of a 10-year-old patient diagnosed with femoral osteosarcoma and treated with neoadjuvant chemotherapy followed by GMRS surgical approach based on a preoperative planning involving a 3D printed model. This piece was used to provide precise information regarding the tumor, to allow preoperative measurements and a surgical simulation. Conclusion. The surgical accuracy can be increased by using a personalized preoperative planning based on a 3D printed model, leading to a lower rate of long/ short-term complications, recurrences, or metastases.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shi Joon Yoo ◽  
Nabil Hussein ◽  
Brandon Peel ◽  
John Coles ◽  
Glen S. van Arsdell ◽  
...  

3D printing allows the most realistic perception of the surgical anatomy of congenital heart diseases without the requirement of physical devices such as a computer screen or virtual headset. It is useful for surgical decision making and simulation, hands-on surgical training (HOST) and cardiovascular morphology teaching. 3D-printed models allow easy understanding of surgical morphology and preoperative surgical simulation. The most common indications for its clinical use include complex forms of double outlet right ventricle and transposition of the great arteries, anomalous systemic and pulmonary venous connections, and heterotaxy. Its utility in congenital heart surgery is indisputable, although it is hard to “scientifically” prove the impact of its use in surgery because of many confounding factors that contribute to the surgical outcome. 3D-printed models are valuable resources for morphology teaching. Educational models can be produced for almost all different variations of congenital heart diseases, and replicated in any number. HOST using 3D-printed models enables efficient education of surgeons in-training. Implementation of the HOST courses in congenital heart surgical training programs is not an option but an absolute necessity. In conclusion, 3D printing is entering the stage of maturation in its use for congenital heart surgery. It is now time for imagers and surgeons to find how to effectively utilize 3D printing and how to improve the quality of the products for improved patient outcomes and impact of education and training.


2020 ◽  
Author(s):  
Peng Gao ◽  
Angsi Liu ◽  
Fuxing Zuo ◽  
Jianxin Kong ◽  
Xueji Li

Abstract Object 3D printing technology has becoming more and more popular in medicine, we aim to describe the application experiences of 3D printing technology in endoscopic surgery for skull base tumors, with the assessment of 3D-printed models in skull base endoscopic surgery simulation and anatomy learning.Method Five patients with 3D-printed models were enrolled in our institution from October 2015 to March 2019. 5 individual models, created by different 3D printing methods and printing materials, were used to design the optimal surgical approach before surgery. Besides, the 3D-printed models were applied in endoscopic surgery simulation and anatomy learning. Likert scale questionnaires (1 indicating strongly disagree; 2, disagree; 3, neutral; 4, agree; and 5, strongly agree) were administered to 9 neurosurgeons in our institution to evaluate the application of 3D printed models. Result We successfully printed 5 cases of complex skull base tumor 3D models and performed endoscopic surgery with the help of information of the 5 3D-printed models. Evaluation of the Likert scores showed that model 4 which was printed by the mixed photosensitive resin material was the most conducive in surgery simulation and anatomy learning. The mean (standard deviation) 3D printing time is 16.3 (4.96) hours, and the mean (SD) printing cost is 4,500 (1183.22) RMB.Conclusion 3D printing technology has a high value in the application of endoscopic surgery for skull base tumors. The fast 3D printing time can satisfy the requirement of tight preoperative inspection time. Besides, the average price is acceptable for patients and clinical anatomy learning. The combination of the technology of 3D printing and the techniques of skull base endoscopy shows many unique advantages.


Sign in / Sign up

Export Citation Format

Share Document