scholarly journals Macro- and microfeatures of Early Cambrian dolomitic microbialites from Tarim Basin, China

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ying Li ◽  
Hong-Xia Jiang ◽  
Ya-Sheng Wu ◽  
Wen-Qing Pan ◽  
Bao-Shou Zhang ◽  
...  

AbstractThe fabrics of microbialites preserved in limestones are generally better than in dolostones. What are the fabrics of the microbialites preserved in heavily dolomitized dolostones? This paper presents an example of a strongly dolomitized Cambrian microbialite profile. The Xiaoerblak Formation (Cambrian Series 2 Stage 3 and lower Stage 4) of the Sugaitblak section in Aksu, Xinjiang Uygur Autonomous Region, China is mainly composed of microbial dolostones. Due to strong alteration by diagenesis, their features, formation and environments have not been fully understood. Here, based on detailed observation on outcrops and thin sections, we show that this formation comprises four kinds of microbialites: laminite, thrombolite, thrombolitic laminite, and Renalcis framestone, in five intervals (Interval I to Interval V). We identified three main types of microbialite fabrics, i.e., clotted fabric, laminated fabric and skeletal fabric, and established a high-resolution vertical evolution sequence of the microbialites. The clotted fabric and the laminated fabric were further divided into subtypes. We found that the original fabrics were mainly affected by dolomitization, recrystallization and dissolution, and the alteration degree of the microbialite fabric is stronger in the lower part of this formation. The laminated fabric has the strongest resistance to diagenesis, followed by the clotted fabric. Based on studies of different rock types and sedimentary structures, we concluded that the sedimentary environment of Xiaoerblak Formation consists of three settings: a) Intervals I to III formed in restricted tidal flat environments, b) Interval IV and the lower part of Interval V in restricted deep subtidal environments, and c) upper part of Interval V in shallowing-up open subtidal environments.

2014 ◽  
Vol 675-677 ◽  
pp. 1363-1367 ◽  
Author(s):  
Guo Min Chen ◽  
Quan Wen Liu ◽  
Min Quan Xia ◽  
Xiang Sheng Bao

The core data, casting thin sections and scanning electron microscopy are used to study the clastic reservoir characteristics and controlling factors of reservoir growth. It indicated that the main reservoir rock types are lithic arkose, Feld spathic sandstone, and a small amount of feldspar lithic sandstone, and with compositional maturity and low to middle structural maturity. Moreover, the primary reservoir space types are mainly intergranular pores, secondary are secondary pores, and reservoir types belong to the medium-high porosity and permeability, and the average porosity and permeability of lower Youshashan formation are 17.70% and 112.5×10-3μm2 separately. Furthermore, the reservoir body is mainly sand body result from deposits of distributary channel and mouth bar of which belong to the braided delta front, and the planar physical property tends to be better reservoir to worse reservoir from northwest to southeast. Finally, mainly factors to control the distribution of reservoir physical property, are the sedimentary environment and lithology, were worked out.


2014 ◽  
Vol 962-965 ◽  
pp. 55-58
Author(s):  
Hui Ming Xue ◽  
Yun Feng Zhang ◽  
Wan Ji Yu

We analyzed the petrology characteristics of Denglouku formation reservoir in Changling fault depression, by 47 ordinary thin sections, 42 thin casting sections, 30 scanning electron microscopy samples and 19 cathodoluminescent samples. The results show that: the main rock types are feldspar debris sandstone and debris feldspar sandstone. The reservoir consists of low compositional maturity, relatively poor psephicity, well graded, high rock debris content. It suggests that the sedimentary environment has strong energy, the moving distance is short, the study area is near the mother rock zone. From north to south, granularity gets coarse. The main cement types are carbonate and argillaceous.


Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


2021 ◽  
Vol 13 (1) ◽  
pp. 166-187
Author(s):  
Hao Liu ◽  
Chan Wang ◽  
Yong Li ◽  
Jianghong Deng ◽  
Bin Deng ◽  
...  

Abstract The black rock series in the Qiongzhusi Formation contains important geochemical information about the early Cambrian tectonic and ecological environment of the southwestern Yangtze Block. In this paper, major, trace, and rare earth element data are presented in an attempt to reveal the sediment source during the deposition of the early Cambrian Qiongzhusi Formation and to reconstruct the sedimentary tectonic environment and weathering intensity during that time. The basin primarily received continental clastic material with neutral-acidic igneous rocks from a stable source and with a moderate level of maturity during the depositional period of the Qiongzhusi Formation. Furthermore, the strata were weakly influenced by submarine hydrothermal fluids during diagenesis. The reconstruction of the sedimentary environment and weathering intensity shows that P2O5 enrichment and water body stratification occurred due to the effects of upwelling ocean currents during the depositional period of the Qiongzhusi Formation. The combination of upwelling and bottom-water hydrothermal fluids led to environmental changes in the study area, from dry and hot to moist and warm. Last, the reconstruction of the tectonic environment of the Qiongzhusi Formation indicates that deposition occurred in continental slope and marginal marine environments associated with a continental arc tectonic system. These findings provide an essential basis for the comprehensive reconstruction of the early Cambrian sedimentary environment of the Yangtze Block.


Author(s):  
Liang-Chien Liu ◽  
Ping-Han Yang ◽  
Shih-Chi Liao ◽  
Bing-Peng Li ◽  
Fu-Cheng Wang ◽  
...  

This article presents the development of a visual-servo filming robot for dolly & truck style camera movement in filming applications. The robot was implemented with a fast-response slider as the upper stage on top of the slow-response tracked robot body as the lower stage, to improve target tracking performance. A new switching controller was developed, which controlled the stages’ motions by balancing and adjusting the weights of vision error and slider’s noncentering error of the upper stage, thus achieving tracking performance better than the traditional master–slave control strategy. The simulations were carried out to evaluate the tracking performance of the model, particularly focusing on evaluating how the dual stage improves the overall response of the model. The similar evaluation was executed experimentally as well. Both results confirm that the fast-response characteristics of the upper stage can compensate the slow dynamics of lower stage, the tracked robot which is inevitably heavy due to its composition.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3662
Author(s):  
Hongzhi Yang ◽  
Liangbiao Lin ◽  
Liqing Chen ◽  
Yu Yu ◽  
Du Li ◽  
...  

The Longtan Formation of the Upper Permian in the Sichuan Basin has become a significant target for shale gas exploration in recent years. Multiple methods, including outcrop observations, thin sections, total organic matter content, X-ray diffraction and scanning electron microscopy were used to investigate the mineralogy, shale lithofacies assemblages and their relationships with the deposition environment. The mineral composition of the Longtan Formation has strong mineral heterogeneity. The TOC values of the Longtan Formation have a wide distribution range from 0.07% to 74.67% with an average value of 5.73%. Four types of shale lithofacies assemblages of the Longtan Formation could be distinguished, as clayey mudstone (CLS), carbonaceous shale (CAS), siliceous shale (SS) and mixed shale (MS) on the basis of mineral compositions. The TOC values of various types of shale lithofacies assemblages in the Longtan Formation varied widely. The shore swamp of the Longtan Formation is most influenced by the terrestrial input and mainly develops CLS and MS. The tidal flat is influenced by the terrestrial input and can also deposit carbonate minerals, developing CLS, CAS and MS. The shallow water melanged accumulation shelf develops CAS and MS, dominated by clay and carbonate minerals. The deep water miscible shelf develops CLS and SS, whose mineral composition is similar to that of the shore swamp, but the quartz minerals are mainly formed by chemical and biological reactions, which are related to the Permian global chert event. The depositional environment of the Longtan Formation controls the shale mineral assemblage of the Longtan Formation and also influences the TOC content.


2018 ◽  
Vol 93 (1) ◽  
pp. 115-125
Author(s):  
John S. Peel

AbstractPhosphatic sclerites of the problematicTarimspiraYue and Gao, 1992 (Cambrian Series 2) recovered by weak acid maceration of limestones display a unique range of mainly strongly coiled morphologies. They were likely organized into multielement scleritomes, but the nature of these is poorly known; some sclerites may have had a grasping function.Tarimspirasclerites grew by basal accretion in an analogous fashion to younger paraconodonts (Cambrian Series 3–4) but lack a basal cavity. Based on proposed homologies,Tarimspiramay provide an extension of the early vertebrate paraconodont–euconodont clade back into the early Cambrian.Tarimspirais described for the first time from Laurentia (North Greenland), extending its known range from China and Siberia in Cambrian Series 2. In addition to the type species,Tarimspira planaYue and Gao, 1992, the Greenland record ofTarimspiraincludes two morphotypes of a new species,Tarimspira artemi.UUID:http://zoobank.org/c7c536c8-cdaf-49a9-ae1d-77c392f553fc.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fengjuan Dong ◽  
Xuefei Lu ◽  
Yuan Cao ◽  
Xinjiu Rao ◽  
Zeyong Sun

Tight sandstone reservoirs have small pore throat sizes and complex pore structures. Taking the Chang 6 tight sandstone reservoir in the Huaqing area of the Ordos Basin as an example, based on casting thin sections, nuclear magnetic resonance experiments, and modal analysis of pore size distribution characteristics, the Chang 6 tight sandstone reservoir in the study area can be divided into two types: wide bimodal mode reservoirs and asymmetric bimodal mode reservoirs. Based on the information entropy theory, the concept of “the entropy of microscale pore throats” is proposed to characterize the microscale pore throat differentiation of different reservoirs, and its influence on the distribution of movable fluid is discussed. There were significant differences in the entropy of the pore throat radius at different scales, which were mainly shown as follows: the entropy of the pore throat radius of 0.01~0.1 μm, >0.1 μm, and <0.01 μm decreased successively; that is, the complexity of the pore throat structure decreased successively. The correlation between the number of movable fluid occurrences on different scales of pore throats and the entropy of microscale pore throats in different reservoirs is also different, which is mainly shown as follows: in the intervals of >0.1 μm and 0.01~0.1 μm, the positive correlation between the occurrence quantity of movable fluid in the wide bimodal mode reservoir is better than that in the asymmetric bimodal mode reservoir. However, there was a negative correlation between the entropy of the pore throat radius and the number of fluid occurrences in the two types of reservoirs in the pore throat radius of <0.01 μm. Therefore, pore throats of >0.1 μm and 0.01~0.1 μm play a controlling role in studying the complexity of the microscopic pore throat structure and the distribution of movable fluid in the Chang 6 tight sandstone reservoir. The above results deepen the understanding of the pore throat structure of tight sandstone reservoirs and present guiding significance for classification evaluation, quantitative characterization, and efficient development of tight sandstone reservoirs.


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-043 ◽  
Author(s):  
Feiyang Chen ◽  
Glenn A. Brock ◽  
Zhiliang Zhang ◽  
Brittany Laing ◽  
Xinyi Ren ◽  
...  

The Guanshan Biota is an unusual early Cambrian Konservat-Lagerstätte from China and is distinguished from all other exceptionally preserved Cambrian biotas by the dominance of brachiopods and a relatively shallow depositional environment. However, the faunal composition, overturn and sedimentology associated with the Guanshan Biota are poorly understood. This study, based on collections through the best-exposed succession of the basal Wulongqing Formation at the Shijiangjun section, Wuding County, eastern Yunnan, China recovered six major animal groups with soft tissue preservation; brachiopods vastly outnumbered all other groups. Brachiopods quickly replace arthropods as the dominant fauna following a transgression at the base of the Wulongqing Formation. A transition from a botsfordiid-, eoobolid- and acrotretid- to an acrotheloid-dominated brachiopod assemblage occurs up-section. Four episodically repeated lithofacies reveal a relatively low-energy, offshore to lower shoreface sedimentary environment at the Shijiangjun section, which is very different from the Wulongqing Formation in the Malong and Kunming areas. Multiple event flows and rapid obrution are responsible for faunal overturn and fluctuation through the section. A detailed lithofacies and palaeontological investigation of this section provides a better understanding of the processes and drivers of faunal overturn during the later phase of the Cambrian Explosion.Supplementary material: Composition and comparison of the Malong Fauna and the Guanshan Biota is are available at: https://doi.org/10.6084/m9.figshare.c.5080799


Sign in / Sign up

Export Citation Format

Share Document