scholarly journals At the Bench: Neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases

2015 ◽  
Vol 99 (2) ◽  
pp. 253-264 ◽  
Author(s):  
Peter C. Grayson ◽  
Mariana J. Kaplan
2016 ◽  
Vol Volume 112 (Number 1/2) ◽  
Author(s):  
Jan G. Nel ◽  
Annette J. Theron ◽  
Roger Pool ◽  
Chrisna Durandt ◽  
Gregory R. Tintinger ◽  
...  

Abstract The human innate immune system is indispensable for protection against potentially invasive microbial and viral pathogens, either neutralising them or containing their spread until effective mobilisation of the slower, adaptive (specific), immune response. Until fairly recently, it was believed that the human innate immune system possessed minimal discriminatory activity in the setting of a rather limited range of microbicidal or virucidal mechanisms. However, recent discoveries have revealed that the innate immune system possesses an array of novel pathogen recognition mechanisms, as well as a resourceful and effective alternative mechanism of phagocyte (predominantly neutrophil)-mediated, anti-infective activity known as NETosis. The process of NETosis involves an unusual type of programmed, purposeful cell death, resulting in the extracellular release of a web of chromatin heavily impregnated with antimicrobial proteins. These structures, known as neutrophil extracellular traps (NETs), immobilise and contribute to the eradication of microbial pathogens, ensuring that the anti-infective potential of neutrophils is sustained beyond the lifespan of these cells. The current review is focused on the mechanisms of NETosis and the role of this process in host defence. Other topics reviewed include the potential threats to human health posed by poorly controlled, excessive formation of NETs, specifically in relation to development of autoimmune and cardiovascular diseases, as well as exacerbation of acute and chronic inflammatory disorders of the airways.


2018 ◽  
Vol 10 (5-6) ◽  
pp. 414-421 ◽  
Author(s):  
Volker Brinkmann

Nearly 15 years after the first description of neutrophil extracellular traps (NETs), our knowledge concerning this structure has expanded considerably. Initially, NETs were considered solely an elaborate function of the innate immune system to combat invading microorganisms. Successively it became clear that NETs have farther-reaching capabilities. They are involved in a series of pathophysiological mechanisms ranging from inflammation to thrombosis where they fulfill essential functions when produced at the right site and the right time but can have a serious impact when generation or clearance of NETs is inadequately controlled. This review provides a concise overview on the far-reaching functions of NETs in health and disease.


2021 ◽  
Vol 8 ◽  
Author(s):  
Colm Keane ◽  
Matthew Coalter ◽  
Ignacio Martin-Loeches

Equilibrium within the immune system can often determine the fate of its host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. Immune dysregulation remains one of the main pathophysiological components of SARS-CoV-2-associated organ injury, with over-activation of the innate immune system, and induced apoptosis of adaptive immune cells. Here, we provide an overview of the innate immune system, both in general and relating to COVID-19. We specifically discuss “NETosis,” the process of neutrophil release of their extracellular traps, which may be a more recently described form of cell death that is different from apoptosis, and how this may propagate organ dysfunction in COVID-19. We complete this review by discussing Stem Cell Therapies in COVID-19 and emerging COVID-19 phenotypes, which may allow for more targeted therapy in the future. Finally, we consider the array of potential therapeutic targets in COVID-19, and associated therapeutics.


Lupus ◽  
2021 ◽  
pp. 096120332110389
Author(s):  
Daniel Albert

The paradigm that autoimmune diseases are abberations in the adaptive immune system is over 50 years old, but recent data suggest a multitude of abnormalities in the innate immune system in lupus and other autoimmune diseases. This viewpoint elaborates the reasons that I think it is time to reexamine this paradigm and shift our research focus to the innate immune system in lupus and other prototypic autoimmune diseases.


Blood ◽  
2019 ◽  
Vol 133 (20) ◽  
pp. 2178-2185 ◽  
Author(s):  
Fernanda V. S. Castanheira ◽  
Paul Kubes

Abstract Neutrophils are an absolutely essential part of the innate immune system, playing an essential role in the control of infectious diseases but more recently are also being viewed as important players in tissue repair. Neutrophils are able to counteract an infection through phagocytosis and/or the release of neutrophil extracellular traps (NETs). By contrast, neutrophils help repair damaged tissues, limiting NET production but still phagocytosing debris. However, when inflammation is recurrent, or the inciting agent persists, neutrophils through a frustrated inability to resolve the problem can release NETs to exacerbate tissue damage during inappropriate inflammation. In this review, we discuss the mechanisms of NET formation, as well as the apparent paradoxical role of neutrophils and NETs in host defense, chronic inflammation, and tissue disrepair.


2020 ◽  
Vol 21 (21) ◽  
pp. 8057 ◽  
Author(s):  
Jürgen Arnhold

The heme protein myeloperoxidase (MPO) is a major constituent of neutrophils. As a key mediator of the innate immune system, neutrophils are rapidly recruited to inflammatory sites, where they recognize, phagocytose, and inactivate foreign microorganisms. In the newly formed phagosomes, MPO is involved in the creation and maintenance of an alkaline milieu, which is optimal in combatting microbes. Myeloperoxidase is also a key component in neutrophil extracellular traps. These helpful properties are contrasted by the release of MPO and other neutrophil constituents from necrotic cells or as a result of frustrated phagocytosis. Although MPO is inactivated by the plasma protein ceruloplasmin, it can interact with negatively charged components of serum and the extracellular matrix. In cardiovascular diseases and many other disease scenarios, active MPO and MPO-modified targets are present in atherosclerotic lesions and other disease-specific locations. This implies an involvement of neutrophils, MPO, and other neutrophil products in pathogenesis mechanisms. This review critically reflects on the beneficial and harmful functions of MPO against the background of immune response.


2018 ◽  
Vol 25 (1) ◽  
pp. 22-33 ◽  
Author(s):  
Matthew N Alder ◽  
Jaya Mallela ◽  
Amy M Opoka ◽  
Patrick Lahni ◽  
David A Hildeman ◽  
...  

Neutrophils are the most abundant immune cell of the innate immune system and participate in essential immune functions. Heterogeneity within neutrophils has been documented, but it is difficult to distinguish if these are altered activation states of a single population or separate subpopulations of neutrophils determined at the time of differentiation. Several groups have identified a subset of human neutrophils that express olfactomedin 4 (OLFM4) and increased OLFM4+ neutrophils during sepsis is correlated with worse outcome, suggesting these neutrophils or the OLFM4 they secrete may be pathogenic. We tested if mice could be used as a model to study OLFM4+ neutrophils. We found the OLFM4 expressing subset of neutrophils is conserved in mice. Depending on the strain, 7–35% of murine neutrophils express OLFM4 and expression is determined early in neutrophil differentiation. OLFM4+ neutrophils phagocytose and transmigrate with similar efficiency as OLFM4− neutrophils. Here we show that within neutrophil extracellular traps (NETs) OLFM4+ and OLFM4− neutrophils undergo NETosis and OLFM4 colocalizes. Finally, we generated an OLFM4 null mouse and show that these mice are protected from death when challenged with sepsis, providing further evidence that the OLFM4 expressing subpopulation of neutrophils, or the OLFM4 they secrete, may be pathogenic during overwhelming infection.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yunzhi Xu ◽  
Guangjie Chen

Mast cells are important in innate immune system. They have been appreciated as potent contributors to allergic reaction. However, increasing evidence implicates the important role of mast cells in autoimmune disease like rheumatoid arthritis and multiple sclerosis. Here we review the current stage of knowledge about mast cells in autoimmune diseases.


2021 ◽  
Vol 103-B (7 Supple B) ◽  
pp. 135-144
Author(s):  
Emile-Victor Kuyl ◽  
Fei Shu ◽  
Branden R. Sosa ◽  
Juan D. Lopez ◽  
Di Qin ◽  
...  

Aims Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Pad4-/- mice that display defects in peptidyl arginine deiminase 4 (PAD4), an essential protein required for NETs) or resolution (via DNase 1 treatment, an enzyme that degrades the cytotoxic DNA matrix) of NETs can prevent osseointegration failure and formation of peri-implant fibrotic tissue. Methods Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited ( Pad4-/- mice) or resolved with a pharmacological agent (DNase 1) in a murine model of osseointegration failure. Results NETs biomarkers were identified in peri-implant fibrotic tissue collected from aseptic loosening patients and at the bone-implant interface in a murine model of osseointegration failure. Inhibition ( Pad4-/- ) or resolution (DNase 1) of NETs improved osseointegration and reduced fibrotic tissue despite loose implant conditions in mice. Conclusion This study identifies a biological target (NETs) for potential noninvasive treatments of aseptic loosening by discovering a novel connection between the innate immune system and post-injury bone remodelling caused by implant loosening. By inhibiting or resolving NETs in an osseointegration failure murine model, fibrotic tissue encapsulation around an implant is reduced and osseointegration is enhanced, despite loose implant conditions. Cite this article: Bone Joint J 2021;103-B(7 Supple B):135–144.


Sign in / Sign up

Export Citation Format

Share Document