SYNTHETIC SEISMOGRAMS OF P WAVES PROPAGATING IN SOLID WEDGES WITH FREE BOUNDARIES

Geophysics ◽  
1966 ◽  
Vol 31 (3) ◽  
pp. 524-535 ◽  
Author(s):  
Karl Fuchs

A numerical method for the synthesis of seismograms for body wave propagation in solid wedges is presented. The method is based on the superposition of multiple reflections arising from the entrance of a plane primary wave. Therefore the method is restricted to that part of the time domain where no diffracted waves from the wedge axis occur. In spite of this restriction, dispersion of body waves in wedges can well be studied by this method. Seismograms have been synthesized which show the dispersion of a primary p‐signal propagating in a solid 10‐degree and a 5‐degree wedge with free boundaries. For wedge angles less than 10 degrees the signal front (to be distinguished from the wavefront) suddenly decreases its velocity from that in the infinite medium to about that of the plate wave as the signal approaches the wedge axis. Simultaneously in this transition zone a decrease of the dominant period of the interference signal occurs. These observations are concordant with previous model studies. Particle motion diagrams disclose elliptical polarization of the interference signal in the neighborhood of the wedge axis; the polarization changes its sense from prograde to retrograde on passing through the transition zone.

Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 339-354 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch ◽  
T. Nissen-Meyer

Abstract. Triplicated body waves sample the mantle transition zone more extensively than any other wave type, and interact strongly with the discontinuities at 410 km and 660 km. Since the seismograms bear a strong imprint of these geodynamically interesting features, it is highly desirable to invert them for structure of the transition zone. This has rarely been attempted, due to a mismatch between the complex and band-limited data and the (ray-theoretical) modelling methods. Here we present a data processing and modelling strategy to harness such broadband seismograms for finite-frequency tomography. We include triplicated P-waves (epicentral distance range between 14 and 30°) across their entire broadband frequency range, for both deep and shallow sources. We show that is it possible to predict the complex sequence of arrivals in these seismograms, but only after a careful effort to estimate source time functions and other source parameters from data, variables that strongly influence the waveforms. Modelled and observed waveforms then yield decent cross-correlation fits, from which we measure finite-frequency traveltime anomalies. We discuss two such data sets, for North America and Europe, and conclude that their signal quality and azimuthal coverage should be adequate for tomographic inversion. In order to compute sensitivity kernels at the pertinent high body wave frequencies, we use fully numerical forward modelling of the seismic wavefield through a spherically symmetric Earth.


1978 ◽  
Vol 68 (1) ◽  
pp. 1-29 ◽  
Author(s):  
Charles A. Langston

abstract Teleseismic P, SV, and SH waves recorded by the WWSS and Canadian networks from the 1971 San Fernando, California earthquake (ML = 6.6) are modeled in the time domain to determine detailed features of the source as a prelude to studying the near and local field strong-motion observations. Synthetic seismograms are computed from the model of a propagating finite dislocation line source embedded in layered elastic media. The effects of source geometry and directivity are shown to be important features of the long-period observations. The most dramatic feature of the model is the requirement that the fault, which initially ruptured at a depth of 13 km as determined from pP-P times, continuously propagated toward the free surface, first on a plane dipping 53°NE, then broke over to a 29°NE dipping fault segment. This effect is clearly shown in the azimuthal variation of both long period P- and SH-wave forms. Although attenuation and interference with radiation from the remainder of the fault are possible complications, comparison of long- and short-period P and short-period pP and P waves suggest that rupture was initially bilateral, or, possibly, strongly unilateral downward, propagating to about 15 km depth. The average rupture velocity of 1.8 km/sec is well constrained from the shape of the long-period wave forms. Total seismic moment is 0.86 × 1026 dyne-cm. Implications for near-field modeling are drawn from these results.


1972 ◽  
Vol 62 (5) ◽  
pp. 1183-1193 ◽  
Author(s):  
F. A. Dahlen

Abstract The effect of a homogeneous anisotropic initial stress on the propagation of infinitesimal amplitude elastic body waves in a perfectly elastic, homogeneous medium is investigated. If the medium is inherently isotropic in the reference configuration and if the magnitude τ0 of the deviatoric part of the initial static stress is small compared to the rigidity μ of the medium, then the apparent body-wave velocities of P waves are unaffected by the initial stress to first order in τ0/μ. The apparent body-wave velocities of S waves are rendered anisotropic to first order, and this effect is described explicitly. It is concluded that the direct effect of an anisotropic initial stress cannot contribute appreciably to the observed velocity anisotropy of horizontally propagating P waves in the oceanic upper mantle. Those observations require an inherent elastic anisotropy of the oceanic uppermantle material.


2012 ◽  
Vol 4 (2) ◽  
pp. 783-821 ◽  
Author(s):  
S. C. Stähler ◽  
K. Sigloch ◽  
T. Nissen-Meyer

Abstract. Triplicated body waves sample the mantle transition zone more extensively than any other wave type, and interact strongly with the discontinuities at 410 km and 660 km. Since the seismograms bear a strong imprint of these geodynamically interesting features, it is highly desirable to invert them for structure of the transition zone. This has rarely been attemped, due to the mismatch between the complex and bandlimited data and the (ray-theoretical) modeling methods. Here we present a data processing and modeling strategy to harness such broadband seismograms for finite-frequency tomography. We include triplicated P-waves (epicentral distance range between 14 and 30°) across their entire broadband frequency range, for both deep and shallow sources. We show that it is possible to predict the complex sequence of arrivals in these seismograms, but only after a careful effort to estimate source time functions and other source parameters from data, variables that strongly influence the waveforms. Modeled and observed waveforms then yield decent cross-correlation fits, from which we measure finite-frequency traveltime anomalies. We discuss two such data sets, for North America and Europe, and conclude that their signal quality and azimuthal coverage should be adequate for tomographic inversion. In order to compute sensitivity kernels at the pertinent high body-wave frequencies, we use fully numerical forward modelling of the seismic wavefield through a spherically symmetric earth.


2021 ◽  
Author(s):  
Felix Bissig ◽  
Amir Khan ◽  
Domenico Giardini

<p>The mantle transition zone (MTZ) is bounded by seismic discontinuities at average depths of 410 km and 660 km, which are generally associated with major mantle mineral transformations. A body wave impinging from above on these discontinuities develops a refracted and reflected branch, leading to multiple arrivals of the same wavetype within a short time window. These so-called triplicated body waves are observed at regional epicentral distances (15-30°) and carry information on MTZ structure due to their strong interaction with the 410 km and 660 km discontinuities. Careful data selection and processing as well as the assessment of source parameters are necessary steps in obtaining a high quality triplication data set. In this study, we consider recordings of events in Central America at permanent and transportable USArray stations, which are inverted for mantle structure. Our methodology is based on a joint consideration of mineral physics and seismic data in a probabilistic inversion framework and allows for determination of mantle thermo-chemical and seismic velocity structure. We present constraints on the mantle structure underneath the Gulf of Mexico.</p>


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


1988 ◽  
Vol 78 (5) ◽  
pp. 1707-1724
Author(s):  
Masayuki Kikuchi ◽  
Yoshio Fukao

Abstract The seismic wave energy is evaluated for 35 large earthquakes by inverting far-field long-period P waves into the multiple-shock sequence. The results show that the seismic wave energy thus obtained is systematically less than that inferred from the Gutenberg-Richter's formula with the seismic magnitude. The difference amounts to one order of magnitude. The results also show that the energy-moment ratio is well confined to a narrow range: 10−6 < ES/Mo < 10−5 with the average of ∼5 × 10−6. This average value is exactly one order of magnitude as small as the energy-moment ratio inferred from the Gutenberg-Richter's formula using the moment magnitude. Comparing the energy-moment ratio with Δσo/2μ, where Δσo and μ are the stress drop and the rigidity, we obtain an empirical relation: ES/Mo ∼ 0.1 × Δσ0/2μ. Such a relation can be interpreted in terms of a subsonic rupture where the energy loss due to cohesion is not negligible to the seismic wave energy.


1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


1983 ◽  
Vol 73 (2) ◽  
pp. 593-613
Author(s):  
Terry C. Wallace ◽  
Donald V. Helmberger ◽  
Gladys R. Engen

abstract In this paper, we study the long-period body waves at regional and upper mantle distances from large underground nuclear explosions at Pahute Mesa, Nevada Test Site. A comparison of the seismic records from neighboring explosions shows that the more recent events have much simpler waveforms than those of the earlier events. In fact, many of the early events produced waveforms which are very similar to those produced by shallow, moderate-size, strike-slip earthquakes; the phase sP is particularly obvious. The waveforms of these explosions can be modeled by assuming that the explosion is accompanied by tectonic release represented by a double couple. A clear example of this phenomenon is provided by a comparison of GREELEY (1966) and KASSERI (1975). These events are of similar yields and were detonated within 2 km of each other. The GREELEY records can be matched by simply adding synthetic waveforms appropriate for a shallow strike-slip earthquake to the KASSERI observations. The tectonic release for GREELEY has a moment of 5 ՠ1024 dyne-cm and is striking approximately 340°. The identification of the sP phase at upper mantle distances indicates that the source depth is 4 km or less. The tectonic release time function has a short duration (less than 1 sec). A comparison of these results with well-studied strike-slip earthquakes on the west coast and eastern Nevada indicate that, if tectonic release is triggered fault motion, then the tectonic release is relatively high stress drop, on the order of several hundred bars. It is possible to reduce these stress drops by a factor of 2 if the tectonic release is a driven fault; i.e., rupturing with the P velocity. The region in which the stress is released for a megaton event has a radius of about 4 km. Pahute Mesa events which are detonated within this radius of a previous explosion have a substantially reduced tectonic release.


1969 ◽  
Vol 59 (3) ◽  
pp. 1247-1258
Author(s):  
Abou-Bakr K. Ibrahim

abstract The amplitude spectrum obtained from Haskell's matrix formulation for body waves travelling through a horizontally layered crustal model shows a sequence of minima and maxima. It is known that multiple reflections within the crustal layers produce constructive and destructive interferences, which are shown as maxima and minima in the amplitude spectrum. Analysis of the minima in the amplitude spectra, which correspond to zero phase in the phase spectra, enables us to determine the thickness of the crust, provided the ratio of wave velocity in the crust to velocity under the Moho is known.


Sign in / Sign up

Export Citation Format

Share Document