SEISMIC SIGNATURES OF SEDIMENTATION MODELS

Geophysics ◽  
1972 ◽  
Vol 37 (1) ◽  
pp. 45-58 ◽  
Author(s):  
J. C. Harms ◽  
P. Tackenberg

Seismic techniques have been used mainly for structural interpretation, but mounting interest in stratigraphic applications is evident. Estimation of sand‐shale ratios from seismically derived average velocities is a recent example of a stratigraphic application. Except in the case of tall pinnacle reefs, today direct location of stratigraphic traps by reflection methods is restricted, at best, to areas of very high quality data and abundant well control. However, it may be possible to interpret some useful stratigraphic characteristics from seismic reflections, the interpretation being based upon the concept of sedimentation models. Most stratigraphic sequences are not random stacks of various lithologies. Commonly, they are well organized and have units with characteristic contacts, thicknesses, lateral extents, lateral facies changes, and vertical sequence. These orderly characteristics are summarized in sedimentation models, where the control of lithologic distribution by dominant depositional processes is emphasized. Three sedimentation models for sandstone and shale sequences are presented. For each, one example is described and converted to a synthetic reflection seismic cross‐section. These cross‐sections are each distinct in terms of reflection polarities, areal changes in reflection amplitudes, continuity of events, and lateral interval velocity changes. The simplified models, although limited in their scope, suggest that additional stratigraphic information can be gleaned from reflection seismic data. To exploit this promise, record processing techniques that emphasize recognition of reflection polarities, amplitudes, continuity, and interval velocities must be developed or improved. It is also necessary to improve our knowledge of seismic boundaries in a variety of stratigraphic sequences. Though difficult, these valuable goals appear attainable.

Geophysics ◽  
1989 ◽  
Vol 54 (5) ◽  
pp. 659-661 ◽  
Author(s):  
Ali A. Nowroozi

Over three decades ago, Dix (1955) derived an approximate equation for the determination of interval velocity from observed reflection seismic data. Assuming a stack of m horizontal layers, with interval velocities [Formula: see text], layer thicknesses [Formula: see text], j = 1, m, and near‐vertical raypaths, Dix (1955) showed that [Formula: see text]where [Formula: see text] and [Formula: see text] are the two‐way vertical times and [Formula: see text] and [Formula: see text] are the root‐mean‐square (rms) velocities to interfaces j + 1 and j, respectively.


Geophysics ◽  
1982 ◽  
Vol 47 (12) ◽  
pp. 1657-1671 ◽  
Author(s):  
Philip S. Schultz

The most commonly used method for obtaining interval velocities from seismic data requires a prior estimate of the root‐mean‐square (rms) velocity function. A reduction to interval velocity uses the Dix equation, where the interval velocity in a layer emerges as a sensitive function of the rms velocity picks above and below the layer. Approximations implicit in this method are quite appropriate for deep data, and they do not contribute significantly to errors in the interval velocity estimate. However, when the data are from a shallow depth (vertical two‐way traveltime being less than direct arrival to the farthest geophone), the assumption within the rms approximation that propagation angles are small requires that much of the reflection energy be muted, along with, of course, all the refraction energy. By means of a simple data transformation to the ray parameter domain via the slanted plane‐wave stack, three types of arrivals from any given interface (subcritical and supercritical reflections and critical refractions) become organized into a single elliptical trajectory. Such a trajectory replaces the composite hyperbolic and linear moveouts in the offset domain (for reflections and critical refractions, respectively). In a layered medium, the trajectory of all but the first event becomes distorted from a true ellipse into a pseudo‐ellipse. However, by a computationally simple layer stripping operation involving p‐dependent time shifts, the interval velocity in each layer can be estimated in turn and its distorting effect removed from underlying layers, permitting a direct estimation of interval velocities for all layers. Enhanced resolution and estimation accuracy are achieved because previously neglected wide‐angle arrivals, which do not conform to the rms approximation, make a substantial contribution in the estimation procedure.


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000058-000067 ◽  
Author(s):  
Torleif André Tollefsen ◽  
Andreas Larsson ◽  
Knut Aasmundtveit

Au-Sn solid-liquid-interdiffusion (SLID) bonding is a novel and promising interconnect technology for high temperature (HT) applications. In combination with Silicon Carbide (SiC) devices, Au-Sn SLID has the potential of being a key technology for the next generation of innovative, cost effective and environmentally friendly drilling and well intervention systems for the oil industry. However, limited knowledge about Au-Sn SLID bonding for combined HT and high power applications is a major restriction to fully realize the high temperature potential of SiC devices. This paper presents a comprehensive study of fluxless Au-Sn SLID bonding. Two different processing techniques – electroplating of Au / Sn layers and sandwiching of eutectic Au-Sn preform between electroplated Au layers – have been studied in a simplified metallization system. The latter process was further investigated in two different Cu / Si3N4 / Cu / NiP / Au-Sn / Ni / Ni2Si / SiC systems (different Au-layer thickness). Die shear tests and cross-sections have been performed on “as bonded”, thermally cycled and thermally aged samples to characterize the bonding properties associated with the different processing techniques, metallization schemes and environmental stress tests. A uniform Au-rich bond interface is produced (the ζ phase with a melting point of 522 °C). The importance of excess Au on both substrate and chip side in the final bond is demonstrated. It is shown that Au-Sn SLID can absorb thermo-mechanical stresses induced by large CTE mismatches (up to 12 ppm/K) in a packaging system during HT thermal cycling. The bonding strength of Au-Sn SLID is shown to be superb, exceeding 78 MPa. Importantly, Au-Sn SLID is shown to be an excellent interconnect technology for HT packaging.


2016 ◽  
Vol 44 (8) ◽  
pp. 1166-1169
Author(s):  
Marcia E. Pereira Bacares

Vascular injury can be induced by different classes of drug candidates, and it can affect the mesenteric vasculature. Sampling of the mesenteric vessels in the rat is crucial for proper assessment of potential adverse or pharmacologic effects of drugs in nonclinical rodent studies. To date, several sampling and processing techniques for the histopathologic evaluation of the mesenteric artery in rodents have been described and used in studies with candidate drugs that may affect the vascular system. However, most of those techniques require a significant amount of time and effort. A less labor-intensive, time-consuming, and expensive technique that allows examination of the mesentery vasculature with abundant longitudinal and cross sections of the vessels when examined microscopically was developed and presented here.


2017 ◽  
Vol 5 (3) ◽  
pp. SJ81-SJ90 ◽  
Author(s):  
Kainan Wang ◽  
Jesse Lomask ◽  
Felix Segovia

Well-log-to-seismic tying is a key step in many interpretation workflows for oil and gas exploration. Synthetic seismic traces from the wells are often manually tied to seismic data; this process can be very time consuming and, in some cases, inaccurate. Automatic methods, such as dynamic time warping (DTW), can match synthetic traces to seismic data. Although these methods are extremely fast, they tend to create interval velocities that are not geologically realistic. We have described the modification of DTW to create a blocked dynamic warping (BDW) method. BDW generates an automatic, optimal well tie that honors geologically consistent velocity constraints. Consequently, it results in updated velocities that are more realistic than other methods. BDW constrains the updated velocity to be constant or linearly variable inside each geologic layer. With an optimal correlation between synthetic seismograms and surface seismic data, this algorithm returns an automatically updated time-depth curve and an updated interval velocity model that still retains the original geologic velocity boundaries. In other words, the algorithm finds the optimal solution for tying the synthetic to the seismic data while restricting the interval velocity changes to coincide with the initial input blocking. We have determined the application of the BDW technique on a synthetic data example and field data set.


2002 ◽  
Vol 39 (5) ◽  
pp. 1181-1192 ◽  
Author(s):  
Erick J Baziw

The seismic cone penetration test (SCPT) has proven to be a very valuable geotechnical tool in facilitating the determination of low strain (<10–4%) in situ compression (P) and shear (S) wave velocities. The P- and S-wave velocities are directly related to the soil elastic constants of Poisson's ratio, shear modulus, bulk modulus, and Young's modulus. The accurate determination of P- and S-wave velocities from the recorded seismic cone time series is of paramount importance to the evaluation of reliable elastic constants. Furthermore, since the shear and compression wave velocities are squared in deriving the elastic constants, small variations in the estimated velocities can cause appreciable errors. The standard techniques implemented in deriving SCPT interval velocities rely upon obtaining reference P- and S-wave arrival times as the probe is advanced into the soil profile. By assuming a straight ray travel path from the source to the SCPT seismic receiver and calculating the relative reference arrival time differences, interval SCPT velocities are obtained. The forward modeling – downhill simplex method (FMDSM) outlined in this paper offers distinct advantages over conventional SCPT velocity profile estimation methods. Some of these advantages consist of the allowance of ray path refraction, greater sophistication in interval velocity determination, incorporation of measurement weights, and meaningful interval velocity accuracy estimators.Key words: seismic cone penetration testing (SCPT), downhill simplex method (DSM), forward modeling, Fermat's principle, weighted least squares (l2 norm), cost function.


Geophysics ◽  
1956 ◽  
Vol 21 (3) ◽  
pp. 828-838 ◽  
Author(s):  
G. J. Blundun

In the Alberta foothills the most valuable use of the refraction seismograph is for the definition of overthrust faulting in the Mississippian limestone which is overlain by a faulted, overthrust, and overturned Cretaceous section. Normally, two refracted arrivals are recorded with characteristic interval velocities of 14,000 ft/sec and 21,000 ft/sec, the former arising from an unknown Cretaceous marker, and the latter from the Mississippian. In contrast to a shot‐range of 65,000 ft required to record the refracted arrival from the Mississippian at a depth of 10,000 ft as the first event, a range of 20,000 ft permits recording it as the later event, with consequent improvement in the quality and reliability of the data, reduces the amount of surveying required together with smaller dynamite charges, and improves radio communication. A geophone spread of 6,300 ft with single geophones at 300 ft intervals recorded on 22 traces is recommended. Both in‐line and broadside refraction with the Mississippian arrival recorded as the later event have been used successfully with certain advantages to each method. The former permits continuous determination of the interval velocity of the refracted events as well as providing two‐way control; the latter is considerably faster, and often faulting may be observed directly on the seismograms without reduction of the data. Specimen seismograms are included to illustrate the two methods. Field operating conditions pertaining to survey tolerances, shot formation, size of dynamite charges, the weathering shot as a polarity check, filtering, geophone frequency, and costs are discussed.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. E281-E299 ◽  
Author(s):  
David Myer ◽  
Steven Constable ◽  
Kerry Key ◽  
Michael E. Glinsky ◽  
Guimin Liu

We describe the planning, processing, and uncertainty analysis for a marine CSEM survey of the Scarborough gas field off the northwest coast of Australia, consisting of 20 transmitter tow lines and 144 deployments positioned along a dense 2D profile and a complex 3D grid. The purpose of this survey was to collect a high-quality data set over a known hydrocarbon prospect and use it to further the development of CSEM as a hydrocarbon mapping tool. Recent improvements in navigation and processing techniques yielded high-quality frequency domain data. Data pseudosections exhibit a significant anomaly that is laterally confined within the known reservoir location. Perturbation analysis of the uncertainties in the transmitter parameters yielded predicted uncertainties in amplitude and phase of just a few percent at close ranges. These uncertainties may, however, be underestimated. We introduce a method for more accurately deriving uncertainties using a line of receivers towed twice in opposite directions. Comparing the residuals for each line yields a Gaussian distribution directly related to the aggregate uncertainty of the transmitter parameters. Constraints on systematic error in the transmitter antenna dip and inline range can be calculated by perturbation analysis. Uncertainties are not equal in amplitude and phase, suggesting that inversion of these data would be better suited in these components rather than in real and imaginary components. One-dimensional inversion showed that the reservoir and a confounding resistive layer above it cannot be separately resolved even when the roughness constraint is modified to allow for jumps in resistivity and prejudices are provided, indicating that this level of detail is beyond the single-site CSEM data. Further, when range-dependent error bars are used, the resolution decreases at a shallower depth than when a fixed-error level is used.


Geophysics ◽  
1976 ◽  
Vol 41 (2) ◽  
pp. 233-242 ◽  
Author(s):  
Peter Hubral

The basic requirements to recover plane layers of constant interval velocity, arbitrary dip and strike from common depth point (CDP) recordings are the following four quantities related to the primary event of each reflector at the common midpoint of a CDP profile: a) Two‐way normal time b) Normal moveout velocity within one arbitrary CDP profile c) Time slope of normally reflected rays within the profile d) Time slope of normally reflected rays in some other direction. The solution of the inverse problem is obtained directly. The moveout velocity is expressed in terms of seismic parameters along the normal incidence path in three dimensions and the direction of the profile within the free surface. A formula connecting dip and strike of the emerging normal ray with the measured time gradients is given and discussed. The method includes, as a special case, the Dix formulas for plane parallel layers.


Sign in / Sign up

Export Citation Format

Share Document