A geophysical study on the Abu Gharadig basin, Egypt

Geophysics ◽  
1985 ◽  
Vol 50 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Ghareeb M. Awad

The area of study comprises one of the most hydrocarbon‐potential basins of the Egyptian Western Desert, the Abu Gharadig basin. Major marine transgression and regression cycles dominated the territory during different geologic times. Those depositional cycles, together with at least three tectonic cycles—the end of the Paleozoic Hercynean, the close of the Jurassic until the Late Cretaceous and, the close of the Cretaceous until Mid‐Teritary—resulted in a highly deformed, thick sedimentary cover. A study of the geophysical anomalies of the basin, including those indicated by aeromagnetic, gravity, and seismic data as well as the study of about 60 deep wells drilled within and around the Abu Gharadig basin, has revealed that the major tectonic disturbances of the area were caused by basement complex block faulting. These major tectonic disturbances have produced great variations in the thickness and distribution of the various geologic units throughout the region. Aeromagnetic anomalies and the wells which reached the basement indicate great variations in the depths and type of the basement complex and the presence of major intrusions in the region. The major fracturing is indicated to be mainly along an east‐west, west‐northwest and east‐northeast directions. The Bouguer gravity anomalies indicate major basement fracturing as well as variations in sedimentary patterns, erosions, and subsequent tectonic disturbances. The most obvious anomalous trends on the gravity map, based on frequency and amplitude, are the north‐east to east‐northeast, the east‐west and the west‐northwest. The main Abu Gharadig depositional center does not show sharp variations because of the homogeneity of the near‐surface rocks and the great basement depth (20 000-40 000 ft). Seismic interpretation has confirmed the presence of all these fracturing trends. It also identified some major structural trends. These are closely related to the depositional centers, and represent potential drilling locations, especially those associated with Late Cretaceous‐Tertiary active contemporaneous faulting.

1996 ◽  
Vol 33 (5) ◽  
pp. 649-655
Author(s):  
David Morin ◽  
Michel Jébrak ◽  
Robert Marquis

A subcircular positive magnetic anomaly and breccias affecting a basanite and its country-rock metasedimentary rocks reveal the presence of a diatreme with a diameter of approximately 420 m, at Eastman, in the Quebec Appalachians. The post-Middle Devonian age, the position in the line of the Monteregian plutons, and the basanite composition, which is comparable to that of the Cretaceous Monteregian alkaline lamprophyres, suggest that the diatreme is related to the Monteregian magmatism. It is located at the junction of two orthogonal tectonic corridors: the north-north-east Baie Verte – Brompton line and an east−west fault network along the prolongation of the Ottawa−Bonnechère Graben. These structures are zones of weakness that probably served as a conduit for the ascending magma and near-surface water to trigger phreatomagmatic eruptions.


2002 ◽  
Vol 199 ◽  
pp. 25-31
Author(s):  
N. Udaya Shankar

The Mauritius Radio Telescope (MRT) is a Fourier synthesis instrument which has been built to fill the gap in the availability of deep sky surveys at low radio frequencies in the southern hemisphere. It is situated in the north-east of Mauritius at a southern latitude of 20°.14 and an eastern longitude of 57°.73. The aim of the survey with the MRT is to contribute to the database of southern sky sources in the declination range −70° ≤ δ ≤ −10°, covering the entire 24 hours of right ascension, with a resolution of 4' × 4'.6sec(δ + 20.14°) and a point source sensitivity of 200 mJy (3σ level) at 151.5 MHz.MRT is a T-shaped non-coplanar array consisting of a 2048 m long East-West arm and a 880 m long South arm. In the East-West arm 1024 fixed helices are arranged in 32 groups and in the South arm 16 trolleys, with four helices on each, which move on a rail are used. A 512 channel, 2-bit 3-level complex correlation receiver is used to measure the visibility function. At least 60 days of observing are required for obtaining the visibilities up to the 880 m spacing. The calibrated visibilities are transformed taking care of the non-coplanarity of the array to produce an image of the area of the sky under observation.This paper will describe the telescope, the observations carried out so far, a few interesting aspects of imaging with this non-coplanar array and present results of a low resolution survey (13' × 18') covering roughly 12 hours of right ascension, and also present an image with a resolution of 4' × 4'.6sec(δ + 20.14°) made using the telescope.


1925 ◽  
Vol 15 (3) ◽  
pp. 257-271 ◽  
Author(s):  
James Hendrick ◽  
George Newlands

1. Previous investigations showed that certain Scottish soils were of glacial drift origin, that they were comparatively rich in unweathered silicates and therefore in reserves of plant-food, that they showed considerable variation in such silicates and were capable of classification accordingly. Some indication was also shown that the glacial drift, and hence the resulting soil, was sometimes of local origin, its character being determined by the underlying rock. In the present investigation a more extensive survey of Scottish soils has been made in order to discover to what extent these preliminary findings might be applicable generally.2. For this purpose soils have been collected from various localities in the north, north-east, west and south of Scotland, and have been analysed mechanically and the “fine sand” fraction examined mineralogically.


2021 ◽  
Author(s):  
Mikhail Kaban ◽  
Alexei Gvishiani ◽  
Roman Sidorov ◽  
Alexei Oshchenko ◽  
Roman Krasnoperov

<p><span>A new model has been developed for the density and thickness of the sedimentary cover in a vast region at the junction of the southern part of the East European Platform, the Pre-Caucasus and some structures adjacent to the south, including the Caucasus. Structure and density of sedimentary basins was studied by employing the approach based on decompensation of gravity anomalies. Decompensative correction for gravity anomalies reduces the effect of deep masses providing compensation of near-surface density anomalies, in contrast to the conventional isostatic or Bouguer anomalies. . The new model of sediments, which implies their thickness and density, gives a more detailed description of the sedimentary thickness and density and reveals new features which were not or differently imaged by previous studies. It helps in better understanding of the origin and evolution of the basins and provides a background for further detailed geological and geophysical studies of the region.</span></p>


2019 ◽  
pp. 3-11
Author(s):  
E. A. Rogozhin ◽  
A. V. Gorbatikov ◽  
Yu. V. Kharazova ◽  
M. Yu. Stepanova ◽  
J. Chen ◽  
...  

In the period from 2007 to 2017 complex geological and geophysical studies were carried out in the three largest flexural-rupture fault zones in the North-West Caucasus (Anapa, Akhtyrka and Moldavan). The micro-seismic sounding (MSM) was used as the main geophysical method. Studies with the help of MSM allowed us to identify the features of the deep structure of the earth’s crust in the study area and to associate them with specific tectonic structures on the surface.The binding was carried out by harmonizing the results of the MSM and the parameters of the section of the sedimentary cover and crustal boundaries according to the drilling data and the work previously performed by the reflected wave method (MOVZ). It was found that the Anapa flexure and longitudinal tectonic zones have clear deep roots, and also separate the pericline of the North-Western Caucasus from the Taman Peninsula and from the lowered blocks of the Northern slope of the folded system.Faults in the study area are divided into: (1) deep faults of the Caucasian stretch, penetrating into the lower crust and even to the upper mantle, and (2) near-surface faults, do not extend to the depths beyond the thickness of the sedimentary cover. The seismogenic role of these tectonic disturbances in the studied seismically active region has been determined.


2018 ◽  
Vol 5 (2) ◽  
pp. 119
Author(s):  
I Dewa Gde Yaya Putra Pratama ◽  
I Nyoman Satya Kumara ◽  
I Nyoman Setiawan

In the RUPTL PT PLN Years 2017 untill 2026, the goverment aim to reach 5000 MW of PV plant potential in 2025. But, until November 2016, the number of PV plant in Indonesia is around 11 MW. To reach the 5000 MW target, many approach must be use. One of the approach is install PV plant on goverment buildings. Pusat Pemerintahan Kabupaten Badung (Puspem Badung) is a goverment buildings complex which located in Badung Regency, Bali is one of the goverment building that can be use for this approach. This paper aim to know the potency of electrical power dan electrical energy produced by Puspem Badung if the PV plant installed on the north, east, west, and south side of the roof. Electrical energy produced by PV plant is simulated by using System Advisor Model (SAM). From the simulation results, north side of the roof can produce energy of 1.847.361 kWh/year. From the analysis, the total energy that can be produced by PV plant is 6.169.092 kWh/year. This amount can supply Puspem Badung energy need by 124,72 %.


2007 ◽  
Vol 44 (11) ◽  
pp. 1551-1565 ◽  
Author(s):  
Lori A Cook ◽  
Sonya A Dehler ◽  
Sandra M Barr

A prominent positive magnetic anomaly spans the 100 km distance between Prince Edward Island and Cape Breton Island in the southern Gulf of St. Lawrence. The anomaly occurs in an area of complex structure where Appalachian terrane boundaries are poorly resolved because of thick late Paleozoic sedimentary cover. Analysis of the magnetic anomaly led to the interpretation that it is produced by four separate, approximately circular, source bodies aligned along the northwesterly trend of the anomaly. Seismic data, physical property measurements, and magnetic and gravity anomalies were used to further investigate the anomaly sources through forward modeling techniques. The four source bodies have densities and magnetic susceptibilities compatible with dioritic to granitic compositions. Modeling also suggests that basement to the north of the plutons has higher density and susceptibility than basement to the south, and hence the source bodies are interpreted as plutons emplaced along the boundary between Ganderian composite terranes to the north and the Ganderian Brookville – Bras d’Or terrane to the south. This interpretation suggests that the Ganderia–Avalonia boundary is located farther south, and shows the need for re-evaluation of the location and role of the Canso fault in offsetting terranes between Cape Breton Island and southern New Brunswick.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Rosalba Napoli ◽  
Gilda Currenti ◽  
Antonino Sicali

A ground magnetic study was performed on the northern upper flank of Mt. Etna to provide new insights into subsurface volcano-tectonic structures. The high resolution magnetic survey was focused on the main structures of Piano delle Concazze, a large flat area dominated by the North- East crater and bounded by the rim of the Valle del Leone depression and the extremity of the North- East Rift. More than 2,500 measurements were gathered with a sampling step of about 3 m covering an area of about 0.2 km2. The total-intensity anomaly field shows the presence of intense South- North aligned maxima related to shallow geological structures affecting this area. Filtering techniques and 2.5D modeling have been applied for the determination of the magnetic source parameters. In order to distinguish the near surface structure, filters of the vertical derivatives, Butterworth high-pass and the tilt derivative were used. The 3D Euler deconvolution has been applied to estimate the depth and the structural indices of the causative sources. The calculated structural indices, that express the geometrical nature of the source, are in agreement with forward modeling. They show that the area is mainly affected by subvertical normal fault and the estimated depth of magnetic sources ranges between 10 m and 40 m. Our total field magnetic survey shows that characteristic magnetic anomalies are related to fault zones in the Piano delle Concazze that are well consistent with the local tectonics. The subsurface structures that have been detected allowed to delineate the general structural framework of the area. In particular, it was possible to clarify that these structures seem to be not deep rooted and consequently they can hardly act as preferential pathways for magma ascent.


Author(s):  
Y. Kugaenko ◽  
S. Drosnina ◽  
Vadim Saltykov ◽  
V. Pavlov ◽  
A. Lander ◽  
...  

The strong (Mwreg=5.8, ML=6.2) near-surface seismic event (Ilpyrskoye earthquake) occurred at 03h12m on 13 March, in the Kamchatka Isthmus. It was the strongest earthquake between 1962 and 2013 for this area. The greatest macroseismic effect was observed at a distance of ~30 km, I=6–7 on the scale MSK-64. We used two independent methods for determining its regional focal mechanism: 1) regional moment tensor in-version using broadband waveforms; 2) solution based on polarities of the P waves. The results are similar: the focal mechanism of Ilpyrskoye earthquake is thrust faulting with strike-slip component; the compression axis is subhorizontal and is oriented in the north-east – south-west direction. The mechanisms for the two strongest aftershocks were also identified, as a result, a change in focal movements during the aftershock process was revealed.The analysis of the aftershock process which consists of two stages with different de-cay character was performed. The process lasted ~ 75 days. About 200 aftershocks ML=3.0–5.7 (КS=7.5–12.9) were recorded, hypocenter depth estimations vary from 0 to 10 km for about 80 % of them. The strongest aftershock was on May 6, 2013 with ML=5.7, Mwreg=4.8, at which the change in focal movements occurred. According to the results of near real time processing, aftershock cloud of Ilpyrskoye earthquake had a pronounced linearity and a great length, which was an artifact. The main cause of the artifact is the minimum number of stations involved in determining the hypocenters of most aftershocks and their quasi-linear disposition. The confidence areas within which solutions are equivalent are shown. We concluded that Ilpyrskoye earthquake is a serious argument that the area of compression between the Okhotsk and North American plates is extended further to the east and the border passes through the Kamchatka Isthmus


2015 ◽  
Vol 19 (2) ◽  
pp. 107-111 ◽  
Author(s):  
Ali Ismet Kanli ◽  
Boriszlav Neducza

<p>We carried out electromagnetic measurements in the vicinity of the near surface molybdenum contamination observed in the “Blue Lagoon” plum located in the north-east of Hungary. The aim of the investigation was to find the origin of the molybdenum pollution, situated in the area, which could be a container or other infrastructure leading to the source of contamination. The field study was conducted in two stages. In the first phase, we gathered electromagnetic data by using GEM-2 type equipment. We derived conductivity and susceptibility maps for each acquired frequency from the electromagnetic data. In the second stage of the field study, GPR data were obtained from 50 MHZ and 450 MHz antennas. In the GPR measurements, we gathered detailed information from GPR depth slices from very shallow depth ranges to deeper parts of the investigated area (from 50cm to 8 m depths). In all results from the measurements executed by the GEM-2 and (50 MHZ and 450 MHz) GPR equipment, there are several clear anomalies are observed in the data for the distribution of molybdenum contamination. Although there are several contaminated zones observed, no clear evidence of the source of contamination was found in the vicinity of the molybdenum pollution peak. </p><p> </p><p> </p><p><strong>Medicione</strong>s<strong> Electromagnéticas para Rastrear la Contaminación de Molibdeno en un Estudio de Superficies</strong></p><p><strong><br /></strong></p><p><strong>Resumen</strong></p>En este estudio se llevaron a cabo mediciones electromagnéticas en las inmediaciones de un foco de contaminación de molibdeno hallado en el "Blue Lagoon", al noreste de Hungría. El propósito de la investigación fue encontrar el origen de la contaminación de molibdeno, detectada en el área, y que podría ser el contenedor u otra infraestructura que lleve a la fuente de polución. El trabajo de campo se llevó a cabo en dos partes. En la primera fase se reunió la información electromagnética a través del equipo GEM-2. De esta forma se obtuvieron mapas de conductividad y susceptibilidad para cada frecuencia adquirida de la información electromagnética. En la segunda fase del estudio de campo se obtuvieron datos del radar de penetración terrestre (GPR, en inglés) con antenas de 50 y de 450 megahercios (MHZ). En las mediciones GPR se recopiló información detallada de las muestras de penetración en un rango desde la superficie a la profundidad en el área de estudio (desde 50 cm a 8 m de profundidad). En todos los resultados de las medidas hechas con los equipos GEM-2 y GPR se encontraron varias anomalías en la distribución de datos de la contaminación por molibdeno. A pesar de que se observaron varias zonas contaminadas, no hay evidencia clara de la fuente de polución encontrada alrededor del pico de contaminación por molibdeno.</p>


Sign in / Sign up

Export Citation Format

Share Document