Enhanced interpretation of magnetic survey data from archaeological sites using artificial neural networks

Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. H45-H53 ◽  
Author(s):  
David. J. Bescoby ◽  
Gavin C. Cawley ◽  
P. Neil Chroston

The use of magnetic surveys for archaeological prospecting is a well-established and versatile technique, and a wide range of data processing routines are often applied to further enhance acquired data or derive source parameters. Of particular interest in this respect is the application of artificial neural networks (ANNs) to predict source parameters such as the burial depths of detected features of interest. Within this study, ANNs based upon a multilayer perceptron architecture are used to perform the nonlinear mapping between buried wall features detected within the magnetic data and their corresponding burial depth for surveys in the ancient city of Butrint in southern Albania, achieving a greater level of information from the survey data. Suitable network training examples and test data were generated using forward models based upon ground-truth observations. The training procedure adopts a supervised learning routine that is optimized using a conjugate gradient method, while the learning algorithm also prunes network elements to prevent overregularization by reducing model complexity. Data processing was further enhanced by introducing rotational invariance using Zernike moments and by utilizing the combined output of a number, or committee, of networks. When applied to a section of survey data from Butrint, the ANN routine successfully predicted the burial depth of a number of detected wall features, with an rms error on the order of [Formula: see text], and provided a coherent map of the buried building foundations. The neural network approach offered advantages in terms of efficiency and flexibility over more conventional data-inversion techniques within the context of the study, giving fast solutions for large, complex data sets while having high noise tolerance.

2021 ◽  
Vol 23 (6) ◽  
pp. 317-326
Author(s):  
E.A. Ryndin ◽  
◽  
N.V. Andreeva ◽  
V.V. Luchinin ◽  
K.S. Goncharov ◽  
...  

In the current era, design and development of artificial neural networks exploiting the architecture of the human brain have evolved rapidly. Artificial neural networks effectively solve a wide range of common for artificial intelligence tasks involving data classification and recognition, prediction, forecasting and adaptive control of object behavior. Biologically inspired underlying principles of ANN operation have certain advantages over the conventional von Neumann architecture including unsupervised learning, architectural flexibility and adaptability to environmental change and high performance under significantly reduced power consumption due to heavy parallel and asynchronous data processing. In this paper, we present the circuit design of main functional blocks (neurons and synapses) intended for hardware implementation of a perceptron-based feedforward spiking neural network. As the third generation of artificial neural networks, spiking neural networks perform data processing utilizing spikes, which are discrete events (or functions) that take place at points in time. Neurons in spiking neural networks initiate precisely timing spikes and communicate with each other via spikes transmitted through synaptic connections or synapses with adaptable scalable weight. One of the prospective approach to emulate the synaptic behavior in hardware implemented spiking neural networks is to use non-volatile memory devices with analog conduction modulation (or memristive structures). Here we propose a circuit design for functional analogues of memristive structure to mimic a synaptic plasticity, pre- and postsynaptic neurons which could be used for developing circuit design of spiking neural network architectures with different training algorithms including spike-timing dependent plasticity learning rule. Two different circuits of electronic synapse were developed. The first one is an analog synapse with photoresistive optocoupler used to ensure the tunable conductivity for synaptic plasticity emulation. While the second one is a digital synapse, in which the synaptic weight is stored in a digital code with its direct conversion into conductivity (without digital-to-analog converter andphotoresistive optocoupler). The results of the prototyping of developed circuits for electronic analogues of synapses, pre- and postsynaptic neurons and the study of transient processes are presented. The developed approach could provide a basis for ASIC design of spiking neural networks based on CMOS (complementary metal oxide semiconductor) design technology.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 854
Author(s):  
Nevena Rankovic ◽  
Dragica Rankovic ◽  
Mirjana Ivanovic ◽  
Ljubomir Lazic

Software estimation involves meeting a huge number of different requirements, such as resource allocation, cost estimation, effort estimation, time estimation, and the changing demands of software product customers. Numerous estimation models try to solve these problems. In our experiment, a clustering method of input values to mitigate the heterogeneous nature of selected projects was used. Additionally, homogeneity of the data was achieved with the fuzzification method, and we proposed two different activation functions inside a hidden layer, during the construction of artificial neural networks (ANNs). In this research, we present an experiment that uses two different architectures of ANNs, based on Taguchi’s orthogonal vector plans, to satisfy the set conditions, with additional methods and criteria for validation of the proposed model, in this approach. The aim of this paper is the comparative analysis of the obtained results of mean magnitude relative error (MMRE) values. At the same time, our goal is also to find a relatively simple architecture that minimizes the error value while covering a wide range of different software projects. For this purpose, six different datasets are divided into four chosen clusters. The obtained results show that the estimation of diverse projects by dividing them into clusters can contribute to an efficient, reliable, and accurate software product assessment. The contribution of this paper is in the discovered solution that enables the execution of a small number of iterations, which reduces the execution time and achieves the minimum error.


Author(s):  
Juan R. Rabuñal Dopico ◽  
Daniel Rivero Cebrian ◽  
Julián Dorado de la Calle ◽  
Nieves Pedreira Souto

The world of Data Mining (Cios, Pedrycz & Swiniarrski, 1998) is in constant expansion. New information is obtained from databases thanks to a wide range of techniques, which are all applicable to a determined set of domains and count with a series of advantages and inconveniences. The Artificial Neural Networks (ANNs) technique (Haykin, 1999; McCulloch & Pitts, 1943; Orchad, 1993) allows us to resolve complex problems in many disciplines (classification, clustering, regression, etc.), and presents a series of advantages that convert it into a very powerful technique that is easily adapted to any environment. The main inconvenience of ANNs, however, is that they can not explain what they learn and what reasoning was followed to obtain the outputs. This implies that they can not be used in many environments in which this reasoning is essential.


2013 ◽  
Vol 17 (1) ◽  
pp. 253-267 ◽  
Author(s):  
N. J. de Vos

Abstract. Despite theoretical benefits of recurrent artificial neural networks over their feedforward counterparts, it is still unclear whether the former offer practical advantages as rainfall–runoff models. The main drawback of recurrent networks is the increased complexity of the training procedure due to their architecture. This work uses the recently introduced and conceptually simple echo state networks for streamflow forecasts on twelve river basins in the Eastern United States, and compares them to a variety of traditional feedforward and recurrent approaches. Two modifications on the echo state network models are made that increase the hydrologically relevant information content of their internal state. The results show that the echo state networks outperform feedforward networks and are competitive with state-of-the-art recurrent networks, across a range of performance measures. This, along with their simplicity and ease of training, suggests that they can be considered promising alternatives to traditional artificial neural networks in rainfall–runoff modelling.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 481 ◽  
Author(s):  
Benjamin Bajželj ◽  
Viktor Drgan

Drug-induced liver injury is a major concern in the drug development process. Expensive and time-consuming in vitro and in vivo studies do not reflect the complexity of the phenomenon. Complementary to wet lab methods are in silico approaches, which present a cost-efficient method for toxicity prediction. The aim of our study was to explore the capabilities of counter-propagation artificial neural networks (CPANNs) for the classification of an imbalanced dataset related to idiosyncratic drug-induced liver injury and to develop a model for prediction of the hepatotoxic potential of drugs. Genetic algorithm optimization of CPANN models was used to build models for the classification of drugs into hepatotoxic and non-hepatotoxic class using molecular descriptors. For the classification of an imbalanced dataset, we modified the classical CPANN training algorithm by integrating random subsampling into the training procedure of CPANN to improve the classification ability of CPANN. According to the number of models accepted by internal validation and according to the prediction statistics on the external set, we concluded that using an imbalanced set with balanced subsampling in each learning epoch is a better approach compared to using a fixed balanced set in the case of the counter-propagation artificial neural network learning methodology.


2001 ◽  
Vol 16 (9-12) ◽  
pp. 1001-1007 ◽  
Author(s):  
Alexei V Lobanov ◽  
Ivan A Borisov ◽  
Sherald H Gordon ◽  
Richard V Greene ◽  
Timothy D Leathers ◽  
...  

2013 ◽  
Vol 24 (1) ◽  
pp. 27-34
Author(s):  
G. Manuel ◽  
J.H.C. Pretorius

In the 1980s a renewed interest in artificial neural networks (ANN) has led to a wide range of applications which included demand forecasting. ANN demand forecasting algorithms were found to be preferable over parametric or also referred to as statistical based techniques. For an ANN demand forecasting algorithm, the demand may be stochastic or deterministic, linear or nonlinear. Comparative studies conducted on the two broad streams of demand forecasting methodologies, namely artificial intelligence methods and statistical methods has revealed that AI methods tend to hide the complexities of correlation analysis. In parametric methods, correlation is found by means of sometimes difficult and rigorous mathematics. Most statistical methods extract and correlate various demand elements which are usually broadly classed into weather and non-weather variables. Several models account for noise and random factors and suggest optimization techniques specific to certain model parameters. However, for an ANN algorithm, the identification of input and output vectors is critical. Predicting the future demand is conducted by observing previous demand values and how underlying factors influence the overall demand. Trend analyses are conducted on these influential variables and a medium and long term forecast model is derived. In order to perform an accurate forecast, the changes in the demand have to be defined in terms of how these input vectors correlate to the final demand. The elements of the input vectors have to be identifiable and quantifiable. This paper proposes a method known as relevance trees to identify critical elements of the input vector. The case study is of a rapid railway operator, namely the Gautrain.


Author(s):  
Ian Tseng ◽  
Jonathan Cagan ◽  
Kenneth Kotovsky

Consumers have different ideas of what makes a design stylish. Some consumers may want a sporty looking car, while others may want a rugged looking or a fuel-efficient looking car. Can computers learn what it means to satisfy those style-based goals and use this knowledge to generate designs that target style-based goals in design? An experiment was conducted where participants were asked to rate computer generated car profiles for sportiness, ruggedness, beauty, and fuel efficiency. This survey data is used as an indicator of consumer stylistic form preferences, and was used to train Artificial Neural Networks (ANN) for each of the four rating categories. The resulting ANNs were then inverted using a Genetic Algorithm (GA) in order to generate new designs that elicit targeted style goals from consumers.


2019 ◽  
Vol 68 (1) ◽  
pp. 197-212
Author(s):  
Dariusz Ampuła

The neural networks, which find currently use in the unusually wide range of problems, in such fields as: finance, medicine, geology or physics, were characterized in the article. It was accent, that neural networks are very sophisticated technique of modelling, able to map extremely complex functions. It was noticed particularly, that neural networks had a non-linear character, what very essentially improve the possibilities of their applications. Some previous applications of neural networks were introduced, both in the area of domestic and foreign, including also military applications. The fuse of UZRGM type (Universal Modernized Fuse of Hand Grenades) was characterized, describing his building and way of action, special attention-getting on the tested features during laboratory diagnostic tests. Necessary technical parameters for the first and the second laboratory diagnostic tests, whose purpose was to build two independent neural networks, on the basis of existing test results and undertaken post-diagnostic decisions were designed. A few artificial neural networks were made and finally the best two independent neural networks were chosen. The main parameters of the chosen active neural networks were introduced in the pictures. Concise information, relating to the built artificial neural networks, for the first and the second laboratory diagnostic tests of the fuses of UZRGM type, was presented in the end of the article. In the summary, clearly distinguished are advantages of the applications of the proposed evaluation method, which significantly shortens an evaluation process of new empirical test results and causes complex automatization of an evaluation process of the tested fuses. Keywords: artificial intelligence, neural networks, activation function, hidden neurons, fuse.


Sign in / Sign up

Export Citation Format

Share Document