scholarly journals Static and dynamic effective stress coefficient of chalk

Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. L1-L11 ◽  
Author(s):  
M. Monzurul Alam ◽  
Ida Lykke Fabricius ◽  
Helle Foged Christensen

Deformation of a hydrocarbon reservoir can ideally be used to estimate the effective stress acting on it. The effective stress in the subsurface is the difference between the stress due to the weight of the sediment and a fraction (effective stress coefficient) of the pore pressure. The effective stress coefficient is thus relevant for studying reservoir deformation and for evaluating 4D seismic for the correct pore pressure prediction. The static effective stress coefficient [Formula: see text] is estimated from mechanical tests and is highly relevant for effective stress prediction because it is directly related to mechanical strain in the elastic stress regime. The corresponding dynamic effective stress coefficient [Formula: see text] is easy to estimate from density and velocity of acoustic (elastic) waves. We studied [Formula: see text] and [Formula: see text] of chalk from the reservoir zone of the Valhall field, North Sea, and found that [Formula: see text] and [Formula: see text] vary with differential stress (overburden stress-pore pressure). For Valhall reservoir chalk with 40% porosity, [Formula: see text] ranges between 0.98 and 0.85 and decreases by 10% if the differential stress is increased by 25 MPa. In contrast, for chalk with 15% porosity from the same reservoir, [Formula: see text] ranges between 0.85 and 0.70 and decreases by 5% due to a similar increase in differential stress. Our data indicate that [Formula: see text] measured from sonic velocity data falls in the same range as for [Formula: see text], and that [Formula: see text] is always below unity. Stress-dependent behavior of [Formula: see text] is similar (decrease with increasing differential stress) to that of [Formula: see text] during elastic deformation caused by pore pressure buildup, for example, during waterflooding. By contrast, during the increase in differential stress, as in the case of pore pressure depletion due to production, [Formula: see text] increases with stress while [Formula: see text] decreases.

2021 ◽  
Vol 8 ◽  
pp. 55-79
Author(s):  
E. Bakhshi ◽  
A. Shahrabadi ◽  
N. Golsanami ◽  
Sh. Seyedsajadi ◽  
X. Liu ◽  
...  

The more comprehensive information on the reservoir properties will help to better plan drilling and design production. Herein, diagenetic processes and geomechanical properties are notable parameters that determine reservoir quality. Recognizing the geomechanical properties of the reservoir as well as building a mechanical earth model play a strong role in the hydrocarbon reservoir life cycle and are key factors in analyzing wellbore instability, drilling operation optimization, and hydraulic fracturing designing operation. Therefore, the present study focuses on selecting the candidate zone for hydraulic fracturing through a novel approach that simultaneously considers the diagenetic, petrophysical, and geomechanical properties. The diagenetic processes were analyzed to determine the porosity types in the reservoir. After that, based on the laboratory test results for estimating reservoir petrophysical parameters, the zones with suitable reservoir properties were selected. Moreover, based on the reservoir geomechanical parameters and the constructed mechanical earth model, the best zones were selected for hydraulic fracturing operation in one of the Iranian fractured carbonate reservoirs. Finally, a new empirical equation for estimating pore pressure in nine zones of the studied well was developed. This equation provides a more precise estimation of stress profiles and thus leads to more accurate decision-making for candidate zone selection. Based on the results, vuggy porosity was the best porosity type, and zones C2, E2 and G2, having suitable values of porosity, permeability, and water saturation, showed good reservoir properties. Therefore, zone E2 and G2 were chosen as the candidate for hydraulic fracturing simulation based on their E (Young’s modulus) and ν (Poisson’s ratio) values. Based on the mechanical earth model and changes in the acoustic data versus depth, a new equation is introduced for calculating the pore pressure in the studied reservoir. According to the new equation, the dominant stress regime in the whole well, especially in the candidate zones, is SigHmax>SigV>Sighmin, while according to the pore pressure equation presented in the literature, the dominant stress regime in the studied well turns out to be SigHmax>Sighmin>SigV.  


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. D235-D249 ◽  
Author(s):  
Yaneng Zhou ◽  
Saeid Nikoosokhan ◽  
Terry Engelder

The Marcellus Formation, a Devonian gas shale in the Appalachian Basin, is a heterogeneous rock as the result of a complex depositional, diagenetic, and deformational history. Although it is overpressured over a large portion of its economic area, the origin and distribution of pore pressure within the gas shale are not well-understood. We have used the sonic properties of the Marcellus and statistical analyses to tackle this problem. The sonic data come from a suite of 53 wells including a calibration well in the Appalachian Basin. We first analyze the influence of various extrinsic and intrinsic parameters on sonic velocities with univariate regression analyses. The sonic velocities of the Marcellus in the calibration well generally decrease with an increase in gamma-ray american petroleum institute (API) and increase with density and effective stress. Basin-wide median sonic velocities generally decrease with an increase in median gamma-ray API and pore pressure and increase with burial depth (equivalent confining stress), effective stress, and median density. Abnormal pore pressure is verified by a stronger correlation between the median sonic properties and effective stress using an effective stress coefficient of approximately 0.7 relative to the correlation between the median sonic properties and depth. The relatively small effective stress coefficient may be related to the fact that natural gas, a “soft” fluid, is responsible for a basin-wide overpressure of the Marcellus. Following the univariate regression analyses, we adopt a multiple linear regression model to predict the median sonic velocities in the Marcellus based on median gamma-ray intensity, median density, thickness of the Marcellus, confining pressure, and an inferred pore pressure. Finally, we predict the pore pressure in the Marcellus based on median sonic velocities, median gamma-ray intensity, median density, thickness of the Marcellus, and confining pressure.


2014 ◽  
Vol 962-965 ◽  
pp. 526-530
Author(s):  
Tao Gao ◽  
Xiao Guo ◽  
Hong Mei Yang ◽  
Hai Tao Li ◽  
Zheng Zhu

Change confining pressure experiment or pore pressure experiment is one of the commonly used method to evaluate the reservoir core stress sensitivity. However, a large number of studies have shown that core net stress is not equal to the effective stress,the drawdown pore pressure experiment are consistent with the characteristics of oil and gas field real development process. The pressure stability of drawdown pore pressure experiment is bad, so, a reliable modified method of change confining pressure stress sensitivity experiment is eagerly expected. On the basis of the differential method principle, effective stress coefficient can be determined through core experiments,and with the use of effective stress coefficient , change confining pressure experiment is modified. Main conclusions are as follows:For sandstone core,at reservoir original stress condition with the pore pressure from 15MPa to 11MPa effective stress coefficient from 0.436 to 0.415;Based on Terzaghi effective stress exaggerate stress sensitivity, ontology effective stress can weaken the stress sensitive; Based on effective stress coefficient in this paper correction stress sensitivity is medium weak,impacts on production results almost coincident with the drawdown pore pressure test results.


Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. N27-N38 ◽  
Author(s):  
Serge A. Shapiro ◽  
Axel Kaselow

Elastic properties of rocks depend on tectonic stress. Using the theory of poroelasticity as a constraint, we analyze features of these dependencies related to changes in rock pore-space geometry. We develop a formalism describing elastic moduli and anisotropy of rocks as nonlinear functions of confining stress and pore pressure. This formalism appears to agree with laboratory observations. To a first approximation, elastic moduli and seismic velocities as well as porosity depend only on the difference between the confining tectonic stress and pore pressure. However, in general, both the confining stress tensor and the pore pressure must be taken into account as independent variables. The stress-dependent geometry of the pore space fully controls the stress-induced changes in elastic moduli and seismic velocities. Specifically, the compliant porosity plays the most important role, despite the fact that in many rocks the compliant porosity is a very small part of total porosity. Changes in compliant porosity with pressure and stress explain the often observed behavior of elastic moduli: in the low compressive stress regime — say, below 50 to 100 MPa — moduli increase rapidly and then taper exponentially into a flat and linear increase with increasing load. Taking into account the strain of the compliant pore space, we introduce a tensor quantity defining the sensitivity of elastic moduli of rocks to the difference between confining stress and pore pressure. We call it the stress sensitivity tensor. This tensor is an important physical characteristic directly related to elastic nonlinearity of rocks. The stress sensitivity tensor governs the changes in elastic anisotropy of a drained poroelastic system as it depends upon the applied load.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Ivan C. Aldana Gallego ◽  
Laura P. Santos ◽  
I. Yucel Akkutlu

Summary Fluid storage capacity measurements of core plugs in the laboratory consider pore volume as a function of effective stress. The latter is equal to applied confining pressure – n × applied pore pressure. However, the results are often reported as a function of difference in the applied pressures, because the effective stress coefficient (n) is an unknown. This creates confusion during the interpretation of laboratory data and leads to added uncertainties in the analysis of the storage capacity of the samples under in-situ conditions. In this paper, we present a new laboratory method that allows simultaneous prediction of the sample pore volume, the coefficient of isothermal pore compressibility, and the effective stress coefficient. These quantities are necessary to predict the fluid storage as a function of effective stress. The method requires two stages of gas (helium) uptake by the sample under confining pressure and pore pressure and measures pressure-volume data. Confining pressure is always kept larger than the equilibrium pore pressure, but their values at each stage are changed arbitrarily. The analysis is simple and includes simultaneous solutions of two algebraic equations including the measured pressure-volumedata. The model is validated by taking the reference pore volume near zero stress. The reference volume predicted matches with that measured independently using the standard helium porosimeter. For sandstone, shale, and carbonate samples, the estimated pore compressibility is, on average, 10−6 psi−1. The effective stress coefficient is higher than unity and is a linear function of the ratio of the applied pressure values. We present a new graphical method that predicts the Biot coefficient (α) of the rock sample, a fundamental quantity used during the strain calculations that indicates the tendency of the rock to deform volumetrically. A new fundamental rule is found between the applied pressure difference and the effective stress: σe/α = pc − pp. Interestingly, the predicted Biot coefficient values for the shale samples show values between 0.46 and 1.0. This indicates that features of the shale sample, such as mineral variability, fine-scale lamination, and fissility, come into play during the fluid storage measurements.


2019 ◽  
Vol 7 (4) ◽  
pp. SH1-SH18
Author(s):  
Guilherme Fernandes Vasquez ◽  
Marcio Jose Morschbacher ◽  
Julio Cesar Ramos Justen

Brazilian presalt reservoirs comprise carbonate rocks saturated with light oil with different amounts of [Formula: see text] and excellent productivity. The occurrence of giant-size accumulations with such productivity generates the interest in production monitoring tools, such as time-lapse seismic. However, time-lapse seismic may present several challenges, such as imaging difficulties, repeatability, and detectability of small variations of reservoir properties. In addition, when assessing time-lapse seismic feasibility, the validity of Gassmann’s modeling for complex, heterogeneous carbonate rocks is arguable. Other questions include the pressure variation effects on the seismic properties of competent rocks. The effective stress is a linear combination of confining stress and pore pressure that governs the behavior of physical properties of rocks. Many applications assume that the effective stress for elastic-wave velocity is given by the difference between confining stress and pore pressure, whereas another common approach uses the Biot-Willis coefficient as a weight applied to the pore pressure to estimate the effective stress. Through a series of experiments involving ultrasonic pulse transmission on saturated core plugs in the laboratory, we verified the applicability of Gassmann’s fluid substitution and estimated the empirical effective stress coefficients related to the P- and S-wave velocities for rock samples from two offshore carbonate reservoirs from the presalt section, Santos Basin. We observed that Gassmann’s equation predicts quite well the effects of fluid replacement, and we found that the effective stress coefficient is less than one and not equal to the Biot-Willis coefficient. Moreover, there is a good agreement between the static and dynamic Biot-Willis coefficient, which is a suggestion that the presalt rocks behave as a poroelastic media. These observations suggest that more accurate time-lapse studies require the estimation of the effective stress coefficient for the particular reservoir of interest.


1998 ◽  
Vol 1 (06) ◽  
pp. 539-544 ◽  
Author(s):  
Ian Palmer ◽  
John Mansoori

This paper (SPE 52607) was revised for publication from paper SPE 36737, first presented at the 1996 SPE Annual Technical Conference & Exhibition, Denver, 6-9 October. Original manuscript received for review 25 October 1996. Revised manuscript received 17 August 1998. Paper peer approved 1 September 1998. Summary In naturally fractured formations such as coal, permeability is sensitive to changes in stress or pore pressure (i.e., changes in effective stress). This paper presents a new theoretical model for calculating pore volume (PV) compressibility and permeability in coals as a function of effective stress and matrix shrinkage, by means of a single equation. The equation is appropriate for uniaxial strain conditions, as expected in a reservoir. The model predicts how permeability changes as pressure is decreased (i.e., drawdown). PV compressibility is derived in this theory from fundamental reservoir parameters. It is not constant, as often assumed. PV compressibility is high in coals because porosity is so small. A rebound in permeability can occur at lower drawdown pressures for the highest modulus and matrix shrinkage values. We have also history matched rates from a boomer well in the fairway of the San Juan basin by use of various stress-dependent permeability functions. The best fit stress/permeability function is then compared with the new theory. P. 539


2019 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Assiss. Prof. Dr. Sabiha Mahdi Mahdi ◽  
Dr. Firas Abd K. Abd K.

Aim: The aimed study was to evaluate the influence of silver nitrate on surfacehardness and tensile strength of acrylic resins.Materials and methods: A total of 60 specimens were made from heat polymerizingresins. Two mechanical tests were utilized (surface hardness and tensile strength)and 4 experimental groups according to the concentration of silver nitrate used.The specimens without the use of silver nitrate were considered as control. Fortensile strength, all specimens were subjected to force till fracture. For surfacehardness, the specimens were tested via a durometer hardness tester. Allspecimens data were analyzed via ANOVA and Tukey tests.Results: The addition of silver nitrate to acrylic resins reduced significantly thetensile strength. Statistically, highly significant differences were found among allgroups (P≤0.001). Also, the difference between control and experimental groupswas highly significant (P≤0.001). For surface hardness, the silver nitrate improvedthe surface hardness of acrylics. Highly significant differences were statisticallyobserved between control and 900 ppm group (P≤0.001); and among all groups(P≤0.001)with exception that no significant differences between control and150ppm; and between 150ppm and 900ppm groups(P>0.05).Conclusion: The addition of silver nitrate to acrylics reduced significantly the tensilestrength and improved slightly the surface hardness.


2020 ◽  
Vol 224 (3) ◽  
pp. 1523-1539
Author(s):  
Lisa Winhausen ◽  
Alexandra Amann-Hildenbrand ◽  
Reinhard Fink ◽  
Mohammadreza Jalali ◽  
Kavan Khaledi ◽  
...  

SUMMARY A comprehensive characterization of clay shale behavior requires quantifying both geomechanical and hydromechanical characteristics. This paper presents a comparative laboratory study of different methods to determine the water permeability of saturated Opalinus Clay: (i) pore pressure oscillation, (ii) pressure pulse decay and (iii) pore pressure equilibration. Based on a comprehensive data set obtained on one sample under well-defined temperature and isostatic effective stress conditions, we discuss the sensitivity of permeability and storativity on the experimental boundary conditions (oscillation frequency, pore pressure amplitudes and effective stress). The results show that permeability coefficients obtained by all three methods differ less than 15 per cent at a constant effective stress of 24 MPa (kmean = 6.6E-21 to 7.5E-21 m2). The pore pressure transmission technique tends towards lower permeability coefficients, whereas the pulse decay and pressure oscillation techniques result in slightly higher values. The discrepancies are considered minor and experimental times of the techniques are similar in the range of 1–2 d for this sample. We found that permeability coefficients determined by the pore pressure oscillation technique increase with higher frequencies, that is oscillation periods shorter than 2 hr. No dependence is found for the applied pressure amplitudes (5, 10 and 25 per cent of the mean pore pressure). By means of experimental handling and data density, the pore pressure oscillation technique appears to be the most efficient. Data can be recorded continuously over a user-defined period of time and yield information on both, permeability and storativity. Furthermore, effective stress conditions can be held constant during the test and pressure equilibration prior to testing is not necessary. Electron microscopic imaging of ion-beam polished surfaces before and after testing suggests that testing at effective stresses higher than in situ did not lead to pore significant collapse or other irreversible damage in the samples. The study also shows that unloading during the experiment did not result in a permeability increase, which is associated to the persistent closure of microcracks at effective stresses between 24 and 6 MPa.


Sign in / Sign up

Export Citation Format

Share Document