Seismic modeling of low-frequency “shadows” beneath gas reservoirs

Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. D417-D423 ◽  
Author(s):  
Elmira Chabyshova ◽  
Gennady Goloshubin

P-wave amplitude anomalies below reservoir zones can be used as hydrocarbon markers. Some of those anomalies are considerably delayed relatively to the reflections from the reservoir zone. High P-wave attenuation and velocity dispersion of the observed P-waves cannot justify such delays. The hypothesis that these amplitude anomalies are caused by wave propagation through a layered permeable gaseous reservoir is evaluated. The wave propagation through highly interbedded reservoirs suggest an anomalous amount of mode conversions between fast and slow P-waves. The converted P-waves, which propagated even a short distance as slow P-waves, should be significantly delayed and attenuated comparatively, with the fast P-wave reflections. The amplitudes and arrival time variations of conventional and converted P-wave reflections at low seismic frequencies were evaluated by means of an asymptotic analysis. The calculations confirmed that the amplitude anomalies due to converted P-waves are noticeably delayed in time relatively to fast P-wave reflections. However, the amplitudes of the modeled converted P-waves were much lower than the amplitude anomalies observed from exploration cases.

Geophysics ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. T155-T164
Author(s):  
Wanting Hou ◽  
Li-Yun Fu ◽  
José M. Carcione ◽  
Zhiwei Wang ◽  
Jia Wei

Thermoelasticity is important in seismic propagation due to the effects related to wave attenuation and velocity dispersion. We have applied a novel finite-difference (FD) solver of the Lord-Shulman thermoelasticity equations to compute synthetic seismograms that include the effects of the thermal properties (expansion coefficient, thermal conductivity, and specific heat) compared with the classic forward-modeling codes. We use a time splitting method because the presence of a slow quasistatic mode (the thermal mode) makes the differential equations stiff and unstable for explicit time-stepping methods. The spatial derivatives are computed with a rotated staggered-grid FD method, and an unsplit convolutional perfectly matched layer is used to absorb the waves at the boundaries, with an optimal performance at the grazing incidence. The stability condition of the modeling algorithm is examined. The numerical experiments illustrate the effects of the thermoelasticity properties on the attenuation of the fast P-wave (or E-wave) and the slow thermal P-wave (or T-wave). These propagation modes have characteristics similar to the fast and slow P-waves of poroelasticity, respectively. The thermal expansion coefficient has a significant effect on the velocity dispersion and attenuation of the elastic waves, and the thermal conductivity affects the relaxation time of the thermal diffusion process, with the T mode becoming wave-like at high thermal conductivities and high frequencies.


2020 ◽  
Vol 224 (1) ◽  
pp. 241-256
Author(s):  
Ehsan Moradian Bajestani ◽  
Anooshiravan Ansari ◽  
Ehsan Karkooti

SUMMARY A robust frequency-dependent local and regional P-wave attenuation model is estimated for continental paths in the Iranian Plateau. In order to calculate the average attenuation parameters, 46 337 vertical-component waveforms related to 9267 earthquakes, which are recorded at the Iranian Seismological Center (IRSC) stations, have been selected in the distance range 10–1000 km. The majority of the event's magnitudes are less than 4.5. This collection of records provides high spatial ray path coverage. Results indicate that the shape of attenuation P-wave curve versus distance is not uniform and has three distinct sections with hinges at 90 and 175 km. A trilinear model for attenuation of P-wave amplitude in the frequency range 1–10 Hz is proposed in this study. Fourier spectral amplitudes are found to decay as R−1.2 (where R is hypocentral distance), corresponding to geometric spreading within 90 km from the source. There is a section from 90 to 175 km, where the attenuation is described as R0.8, and the attenuation is described well beyond 175 km by R−1.3. Moreover, the average quality factor for Pg and Pn waves (QPg and QPn), related to anelastic attenuation is obtained as Qpg= (54.2 ± 2.6)f(1.0096±0.07) and Qpn= (306.8 ± 7.4)f (0.51±0.05). There is a good agreement between the results of the model and observations. Also, the attenuation model shows compatibility with the recent regional studies. From the results it turns out that the amplitude of P waves attenuates more rapidly in comparison with the global models in local distances.


Author(s):  
Vladislav S. Sorokin

The paper deals with the analysis of wave propagation in a general one-dimensional (1D) non-uniform waveguide featuring multiple modulations of parameters with different, arbitrarily related, spatial periods. The considered quasi-periodic waveguide, in particular, can be viewed as a model of pure periodic structures with imperfections. Effects of such imperfections on the waveguide frequency bandgaps are revealed and described by means of the method of varying amplitudes and the method of direct separation of motions. It is shown that imperfections cannot considerably degrade wave attenuation properties of 1D periodic structures, e.g. reduce widths of their frequency bandgaps. Attenuation levels and frequency bandgaps featured by the quasi-periodic waveguide are studied without imposing any restrictions on the periods of the modulations, e.g. for their ratio to be rational. For the waveguide featuring relatively small modulations with periods that are not close to each other, each of the frequency bandgaps, to the leading order of smallness, is controlled only by one of the modulations. It is shown that introducing additional spatial modulations to a pure periodic structure can enhance its wave attenuation properties, e.g. a relatively low-frequency bandgap can be induced providing vibration attenuation in frequency ranges where damping is less effective.


2019 ◽  
Vol 23 (4) ◽  
pp. 359-364
Author(s):  
Yunlan He ◽  
Xikai Wang ◽  
Hongjie Sun ◽  
Zhenguo Xing ◽  
Shan Chong ◽  
...  

To identify the lithology of coal seam roof and explore the influence of these roofs on the enrichment of coalbed methane, low-frequency rock petrophysics experiments, seismic analyses and gas-bearing trend analyses were performed. The results show that the sound wave propagation speed in rock at seismic frequencies was lower than that at ultrasound frequencies. Additionally, the P-wave velocities of gritstone, fine sandstone, argillaceous siltstone and mudstone were 1,651 m/s, 2,840 m/s, 3,191 m/s and 4,214 m/s, respectively. The surface properties of the coal seam roofs were extracted through 3D seismic wave impedance inversion. The theoretical P-wave impedance was calculated after the tested P-wave velocity was determined. By matching the theoretical P-wave impedance of the four types of rocks with that of the coal seam roofs, we identified the lithology of the roofs. By analyzing known borehole data, we found that the identified lithology was consistent with that revealed by the data. By comparing and analyzing the coal seam roof lithology and the gas-bearing trends in the study area, we discovered that the coal seam roof lithology was related to the enrichment of coalbed methane. In the study area, areas with high gas contents mainly coincided with roof zones composed of mudstone and argillaceous siltstone, and those with low gas contents were mainly associated with fine sandstone roof areas. Thus, highly compact areas of coal seam roof are favorable for the formation and preservation of coalbed methane. 


Geophysics ◽  
1998 ◽  
Vol 63 (3) ◽  
pp. 928-934 ◽  
Author(s):  
Simon M. Jones ◽  
Clive McCann ◽  
Timothy R. Astin ◽  
Jeremy Sothcott

Petrophysical interpretation of increasingly refined seismic data from subsurface formations requires a more fundamental understanding of seismic wave propagation in sedimentary rocks. We consider the variation of ultrasonic wave velocity and attenuation in sandstones with pore‐fluid salinity and show that wave propagation is modified in proportion to the clay content of the rock and the salinity of the pore fluid. Using an ultrasonic pulse reflection technique (590–890 kHz), we have measured the P-wave and S-wave velocities and attenuations of 15 saturated sandstones with variable effective pressure (5–60 MPa) and pore‐fluid salinity (0.0–3.4 M). In clean sandstones, there was close agreement between experimental and Biot model values of [Formula: see text], but they diverged progressively in rocks containing more than 5% clay. However, this effect is small: [Formula: see text] changed by only 0.6% per molar change in salinity for a rock with a clay content of 29%. The variation of [Formula: see text] with brine molarity exhibited Biot behavior in some samples but not in others; there was no obvious relationship with clay content. P-wave attenuation was independent of pore‐fluid salinity, while S-wave attenuation was weakly dependent. The velocity data suggest the frame bulk and shear moduli of sandstones are altered by changes in the pore‐fluid salinity. One possible mechanism is the formation damage caused by clay swelling and migration of fines in low‐molarity electrolytes. The absence of variation between the attenuation in water‐saturated and brine‐saturated samples indicates the attenuation mechanism is relatively unaffected by changes in the frame moduli.


2021 ◽  
pp. 1-28
Author(s):  
Rajan Prasad ◽  
Arnab Banerjee

Abstract This paper investigates the flexural wave propagation through elastically coupled metabeams. It is assumed that the metabeam is formed by connecting successive beams with each other using distributed elastic springs. The equations of motion of a representative unit of the above mentioned novel structural form is established by dividing it into three constitutive components that are two side beams, modeled employing Euler-Bernoulli beam equation and an elastically coupled articulated distributed spring connection (ECADSC) at middle. ECADSC is modeled as parallel double beams connected by distributed springs. The underlying mechanics of this system in context of elastic wave propagation is unique when compared with the existing state of art in which local resonators, inertial amplifiers etc. are attached to the beam to widen the attenuation bandwidth. The dynamic stiffness matrix is employed in conjunction with Bloch-Floquet theorem to derive the band-structure of the system. It is identified that the coupling coefficient of the distributed spring layer and length ratio between the side beams and the elastic coupling plays the key role in the wave attenuation. It has been perceived that a considerable widening of the attenuation band gap in the low-frequency can be achieved while the elastically distributed springs are weak and distributed in a small stretch. Specifically, 140% normalized band gap can be obtained only by tuning the stiffness and the length ratio without adding any added masses or resonators to the structure.


1974 ◽  
Vol 64 (5) ◽  
pp. 1501-1507 ◽  
Author(s):  
D. J. Sutton

Abstract A fall in P-wave velocity before the Gisborne earthquake of March 4, 1966 is indicated by arrival-time residuals of P waves from distant earthquakes recorded at the Gisborne seismograph station. Residuals were averaged over 6-month intervals from 1964 to 1968 and showed an increase of about 0.5 sec, implying later arrival times. The change began about 480 days before the earthquake. This precursory time interval is about that expected for an earthquake of this magnitude (ML = 6.2), but unlike most other reported instances, there was no obvious delay between the return of the velocity to normal and the occurrence of the earthquake. Similar analyses were carried out over the same period for two other New Zealand seismograph stations; at Karapiro there was no significant variation in mean residuals, and at Wellington the scatter was too large for the results to be meaningful. The Gisborne earthquake had a focus in the lower crust, about 25 km deep and was deeper than other events for which such precursory drops in P-wave velocity have been reported.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. D73-D79 ◽  
Author(s):  
Qiaomu Qi ◽  
Arthur C. H. Cheng ◽  
Yunyue Elita Li

ABSTRACT Formation S-wave attenuation, when combined with compressional attenuation, serves as a potential hydrocarbon indicator for seismic reservoir characterization. Sonic flexural wave measurements provide a direct means for obtaining the in situ S-wave attenuation at log scale. The key characteristic of the flexural wave is that it propagates at the formation shear slowness and experiences shear attenuation at low frequency. However, in a fast formation, the dipole log consists of refracted P- and S-waves in addition to the flexural wave. The refracted P-wave arrives early and can be removed from the dipole waveforms through time windowing. However, the refracted S-wave, which is often embedded in the flexural wave packet, is difficult to separate from the dipole waveforms. The additional energy loss associated with the refracted S-wave results in the estimated dipole attenuation being higher than the shear attenuation at low frequency. To address this issue, we have developed a new method for accurately determining the formation shear attenuation from the dipole sonic log data. The method uses a multifrequency inversion of the frequency-dependent flexural wave attenuation based on energy partitioning. We first developed our method using synthetic data. Application to field data results in a shear attenuation log that is consistent with lithologic interpretation of other available logs.


Geophysics ◽  
1993 ◽  
Vol 58 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Nabil Akbar ◽  
Jack Dvorkin ◽  
Amos Nur

To relate P‐wave attenuation to permeability, we examine a three‐dimensional (3-D) theoretical model of a cylindrical pore filled with viscous fluid and embedded in an infinite isotropic elastic medium. We calculate both attenuation and permeability as functions of the direction of wave propagation. Attenuation estimates are based on the squirt flow mechanism; permeability is calculated using the Kozeny‐Carman relation. We find that in the case when a plane P‐wave propagates perpendicular to the pore orientation [Formula: see text], attenuation is always higher than when a wave propagates parallel to this orientation [Formula: see text]. The ratio of these two attenuation values [Formula: see text] increases with an increasing pore radius and decreasing frequency and saturation. By changing permeability, varying the radius of the pore, we find that the permeability‐attenuation relation is characterized by a peak that shifts toward lower permeabilities as frequency decreases. Therefore, the attenuation of a low‐frequency wave decreases with increasing permeability. We observe a similar trend on relations between attenuation and permeability experimentally obtained on sandstone samples.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. O1-O8 ◽  
Author(s):  
José M. Carcione ◽  
Stefano Picotti

Recent research has established that the dominant P-wave attenuation mechanism in reservoir rocks at seismic frequencies is because of wave-induced fluid flow (mesoscopic loss). The P-wave induces a fluid-pressure difference at mesoscopic-scale inhomogeneities (larger than the pore size but smaller than the wavelength, typically tens of centimeters) and generates fluid flow and slow (diffusion) Biot waves (continuity of pore pressure is achieved by energy conversion to slow P-waves, which diffuse away from the interfaces). In this context, we consider a periodically stratified medium and investigate the amount of attenuation (and velocity dispersion) caused by different types of heterogeneities in the rock properties, namely, porosity, grain and frame moduli, permeability, and fluid properties. The most effective loss mechanisms result from porosity variations and partial saturation, where one of the fluids is very stiff and the other is very compliant, such as, a highly permeable sandstone at shallow depths, saturated with small amounts of gas (around 10% saturation) and water. Grain- and frame-moduli variations are the next cause of attenuation. The relaxation peak moves towards low frequencies as the (background) permeability decreases and the viscosity and thickness of the layers increase. The analysis indicates in which cases the seismic band is in the relaxed regime, and therefore, when the Gassmann equation can yield a good approximation to the wave velocity.


Sign in / Sign up

Export Citation Format

Share Document