Experimental investigation of the effects of clay content and compaction stress on the elastic properties and anisotropy of dry and saturated synthetic shale

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. C195-C208 ◽  
Author(s):  
Fei Gong ◽  
Bangrang Di ◽  
Jianxin Wei ◽  
Pinbo Ding ◽  
He Li ◽  
...  

Anisotropy in shales is an important issue in exploration and reservoir geophysics, and it has been proven extremely difficult to correlate anisotropy in natural shale by means of a single variable (in this case, clay content or compaction stress) because of the influence of multiple factors, such as water content, total organic carbon content, and complex mineral compositions. Thus, we used quartz, kaolinite, calcite, and kerogen extract as the primary materials to construct two sets of synthetic shale samples, each with a different clay content by weight and a different compaction stress. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry and saturated samples of our synthetic shales. The results reveal that the velocities decrease with clay content by weight and increase with compaction stress and that these changes are significant at low compaction stress. The velocity anisotropy of the samples increases with clay content and compaction stress due to the increasing alignment of the clay platelets. S-wave anisotropy is more sensitive to the clay content or compaction stress than P-wave anisotropy. The dynamic Young’s modulus [Formula: see text] of the samples decreases with clay content and increases with compaction stress, whereas Poisson’s ratio [Formula: see text] increases with clay content and decreases with compaction stress. Young’s modulus perpendicular to the symmetry axis is always larger than that parallel to the symmetry axis, but Poisson’s ratio perpendicular to the symmetry axis may be larger or smaller than that parallel to the symmetry axis, which indicates that mechanical properties have obvious anisotropic behavior. The elastic properties and anisotropy are also affected by fluids; the values of elastic and mechanical anisotropy parameters in saturated samples are significantly lower than those in dry samples.

Geophysics ◽  
1960 ◽  
Vol 25 (2) ◽  
pp. 433-444 ◽  
Author(s):  
R. L. Mann ◽  
I. Fatt

Bulk compressibility, Young’s modulus, and Poisson’s ratio were measured on three sandstones. Measurements were made on both dry and water saturated samples. Several runs were made on each sandstone to establish the statistical validity of the differences observed between the wet and dry samples. Bulk compressibility of wet sandstone was 10 to 30 percent greater than for dry. Young’s modulus was 8 to 20 percent less for wet sandstone, and Poisson’s ratio was 100 percent greater on one type of sandstone when wet and only slightly greater or about the same on wet samples of the others. A high clay content is believed to lead to a large effect of water on the elastic moduli of sandstone.


2013 ◽  
Vol 184 (4-5) ◽  
pp. 347-355
Author(s):  
Róbert Porjesz ◽  
Françoise Bergerat

Abstract Physical properties of in situ rock mass are usually estimated from results obtained through laboratory tests on intact rock samples because the access to in situ rock may be quite challenging. This approach however raises some questions concerning the number of samples needed for reliable result, the validity of the extrapolation of the parameters from centimetre scale to a large rock mass and finally the effect of discontinuities contained in the rock mass. An underground quarry in Bougival with easy access to metre-scale pillars and the possibility to collect large number of samples has been chosen to analyse the scale effect and the anisotropy of the Campanian chalk. Different experiments have been designed to determine the dynamic elastic properties (Young’s modulus and Poisson’s ratio) based on geophysical approaches: ultrasonic measurements on laboratory samples, and “hammer” seismic measurements in situ. The static Young’s modulus and Poisson’s ratio have been determined through uniaxial compression tests on centimetre core samples. Pillars with and without visible discontinuities, as well as with various overburden rock thicknesses, have been chosen in order to analyse the possible impact of different heterogeneities on the elastic properties. Core samples of intact chalk, with 40mm to 100mm diameters, have been studied in laboratory. The high dispersion observed on the different results suggests that if only a few tests are analysed, the conclusions may not be representative. A statistical approach is more appropriate to analyse the mechanical properties of the chalk. The dynamic Young’s Modulus and Poisson’s ratio calculated from laboratory samples (centimetres) and in situ rocks (about ten metres) do not reveal any clear impact of size on these elastic properties. The presence of discontinuities has a major impact on both the dynamic Young’s modulus and Poisson’s ratio. Decreasing values of these properties have been observed where discontinuities (fractures, flints) have been detected. Finally, the overburden rock thickness above the underground quarries (from 14m to 50m) seems to have no effect on the mechanical properties; the uncertainty of the measurements, partly due to the heterogeneity of the chalk mass, is likely to be more important than the effect of load on the pillars.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. MR57-MR66 ◽  
Author(s):  
Fei Gong ◽  
Bangrang Di ◽  
Jianxin Wei ◽  
Pinbo Ding ◽  
Xiao Pan ◽  
...  

Clay minerals are the most abundant materials in shale. Their presence significantly influences the elastic behavior of reservoir rocks as a function of mineral type, volume, and distribution, and their orientation controls the shale’s intrinsic anisotropic behaviors. Thus, knowing the elastic properties of shale with different types of clay minerals is imperative for fully understanding the seismic properties of the reservoir. However, it is extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay), due to the influences of multiple factors, including water, total organic carbon content, complex mineral composition, and so on. Thus, we use quartz, clay (kaolinite, illite, and smectite), carbonate, and kerogen extract as the primary materials to construct synthetic shale with different types of clay. Ultrasonic experiments were conducted to study the anisotropy of velocity and mechanical properties (Young’s modulus and Poisson’s ratio) in dry synthetic shale samples as a function of applied axial stress. The results show that the velocity of samples increases with applied pressure and the rate of velocity increase is higher at low pressures. Similarly, the dynamic Young’s modulus and Poisson’s ratio increase with applied pressure; [Formula: see text] is always larger than [Formula: see text], but [Formula: see text] may be larger or smaller than [Formula: see text]. Furthermore, velocity anisotropy and mechanical anisotropy decrease with the increase of stress and are sensitive to stress and lithology. The closure of large aspect-ratio pores (and/or microcracks) seems to be a dominant mechanism controlling the change of anisotropy. Finally, the changes in mechanical anisotropy under applied stress are larger compared with the changes in velocity anisotropy, indicating that mechanical properties are more sensitive to the changes in rock property.


2008 ◽  
Vol 33-37 ◽  
pp. 969-974 ◽  
Author(s):  
Bong Bu Jung ◽  
Seong Hyun Ko ◽  
Hun Kee Lee ◽  
Hyun Chul Park

This paper will discuss two different techniques to measure mechanical properties of thin film, bulge test and nano-indentation test. In the bulge test, uniform pressure applies to one side of thin film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as the elastic modulus and the residual stress. Nano-indentation measurements are accomplished by pushing the indenter tip into a sample and then withdrawing it, recording the force required as a function of position. . In this study, modified King’s model can be used to estimate the mechanical properties of the thin film in order to avoid the effect of substrates. Both techniques can be used to determine Young’s modulus or Poisson’s ratio, but in both cases knowledge of the other variables is needed. However, the mathematical relationship between the modulus and Poisson's ratio is different for the two experimental techniques. Hence, achieving agreement between the techniques means that the modulus and Poisson’s ratio and Young’s modulus of thin films can be determined with no a priori knowledge of either.


Author(s):  
George Lucas Dias ◽  
Ricardo Rodrigues Magalhães ◽  
Danton Diego Ferreira ◽  
Bruno Henrique Groenner Barbosa

The knowledge of materials' mechanical properties in design during product development phases is necessary to identify components and assembly problems. These are problems such as mechanical stresses and deformations which normally cause plastic deformation, early fatigue or even fracture. This article is aimed to use particle swarm optimization (PSO) and finite element inverse analysis to determine Young's Modulus and Poisson's ratio from a cantilever beam, manufactured in ASTM A36 steel, subjected to a load of 19.6 N applied to its free end. The cantilever beam was modeled and simulated using a commercial FEA software. Constriction Factor Method (PSO variation) was used and its parameters were analyzed in order to improve errors. PSO results indicated Young's Modulus and Poisson's ratio errors of around 1.9% and 0.4%, respectively, when compared to the original material properties. Improvement in the data convergence and a reduction in the number of PSO iterations was observed. This shows the potentiality of using PSO along with Finite Element Inverse Analysis for mechanical properties evaluation.


2005 ◽  
Vol 297-300 ◽  
pp. 574-580 ◽  
Author(s):  
Takahiro Namazu ◽  
Shozo Inoue ◽  
Daisuke Ano ◽  
Keiji Koterazawa

This paper focuses on investigating mechanical properties of micron-thick polycrystalline titanium nitride (TiN) films. We propose a new technique that can directly measure lateral strain of microscale crystalline specimen by X-ray diffraction (XRD) during tensile test. The XRD tensile test can provide not only Young’s modulus but also Poisson’s ratio of TiN films. Micron-thick TiN films were deposited onto both surfaces of single crystal silicon (Si) specimen by r.f. reactive magnetron sputtering. Young’s modulus and Poisson’s ratio of Si specimen obtained by XRD tensile tests were in good agreement with analytical values. TiN films deposited at Ar partial pressure of 0.7Pa had the average values of 290GPa and 0.36 for Young’s modulus and Poisson’s ratio. The elastic mechanical properties of TiN films gradually decreased down to 220GPa and 0.29 with increasing Ar partial pressure up to 1.0Pa, regardless of film thickness. The change in the film properties with Ar partial pressure would be attributed to the change in the film density.


Author(s):  
Jana Simeonovová ◽  
Jaroslav Buchar

The problem of the identification of the elastic properties of eggshell, i.e. the evaluation of the Young's modulus and Poisson's ratio is solved. The eggshell is considered as a rotational shell. The experiments on the egg compression under quasistatic loading have been conducted. During these experiments a strain on the eggshell surface has been recorded. By the mutual comparison between experimental and theoretical values of strains the influence of the elastic constants has been demonstrated.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1462 ◽  
Author(s):  
Yuqi Jin ◽  
Teng Yang ◽  
Shuai Ju ◽  
Haifeng Zhang ◽  
Tae-Youl Choi ◽  
...  

The temperature dependence of the mechanical properties of polyvinyl alcohol-based poly n-isopropyl acrylamide (PVA-PNIPAm) hydrogel was studied from the static and dynamic bulk modulus of the material. The effect of the temperature-induced volumetric phase transition on Young’s Modulus, Poisson’s ratio, and the density of PVA-PNIPAm was experimentally measured and compared with a non-thermo-responsive Alginate hydrogel as a reference. An increase in the temperature from 27.5 to 32 °C results in the conventional temperature-dependent de-swelling of the PVA-PNIPAm hydrogel volume of up to 70% at the lower critical solution temperature (LCST). However, with the increase in temperature, the PVA-PNIPAm hydrogel showed a drastic increase in Young’s Modulus and density of PVA-PNIPAm and a corresponding decrease in the Poisson’s ratio and the static bulk modulus around the LCST temperature. The dynamic bulk modulus of the PVA-PNIPAm hydrogel is highly frequency-dependent before the LCST and highly temperature-sensitive after the LCST. The dynamic elastic properties of the thermo-responsive PVA-PNIPAm hydrogel were compared and observed to be significantly different from the thermally insensitive Alginate hydrogel.


2019 ◽  
Vol 8 (3) ◽  
pp. 7194-7199

Bearings are critical components for the transmission of motion in machines. Automotive components, especially bearings, will wear out over a certain period of time because they are constantly subjected to high levels of stress and friction. Studies have proven that coatings can extend the lifespan of bearings. Hence, it is necessary to conduct studies on coatings for bearings, particularly the mechanical and wear properties of the coating material. This detailed study focused on the mechanical properties of single-coatings of TiN and TiAIN using the finite element method (FEM). The mechanical properties that can be obtained from nano-indentation experiments are confined to just the Young’s modulus and hardness. Therefore, nanoindentation simulations were conducted together with the finite element method to obtain more comprehensive mechanical properties such as the yield strength and Poisson’s ratio. In addition, various coating materials could be examined by means of these nanoindentation simulations, as well the effects of those parameters that could not be controlled experimentally, such as the geometry of the indenter and the bonding between the coating and the substrate. The simulations were carried out using the ANSYS Mechanical APDL software. The mechanical properties such as the Young’s modulus, yield strength, Poisson’s ratio and tangent modulus were 370 GPa, 19 GPa, 0.21 and 10 GPa, respectively for the TiAlN coating and 460 GPa, 14 GPa, 0.25 and 8 GPa, respectively for the TiN coating. The difference between the mechanical properties obtained from the simulations and experiments was less than 5 %.


Author(s):  
Davood Askari ◽  
Mehrdad N. Ghasemi-Nejhad

It is frequently reported that carbon nanotubes can efficiently be used to reinforce composite materials and considerably improve their structural mechanical properties. Therefore, it is essential to investigate the effective properties of such nanocomposites. In this work, an analytical approach is employed to derive the analytical exact solutions for the effective Young’s modulus and major Poisson’s ratio of a three-phase composite cylinder model representing a matrix filled single-walled carbon nanotube (SWCNT) embedded in another host material. In this study, all three constituents are considered generally cylindrical orthotropic. For validation, results from finite element analysis of an identical 3-D model are compared to those obtained analytically. It is shown that both techniques are in excellent agreement and therefore analytical exact solutions for the prediction of effective axial Young’s modulus and major Poisson’s ratio of the filled SWCNT embedded in another host material and all having orthotropic properties are verified.


Sign in / Sign up

Export Citation Format

Share Document