Microseismicity caused by injection of water in a gas-saturated reservoir

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. KS183-KS189
Author(s):  
Lucas A. Macias ◽  
Juan E. Santos ◽  
Gabriela B. Savioli ◽  
José M. Carcione

Microseismic events along preexisting zones of weakness occur in a reservoir due to pore pressure buildup and fracturing during fluid injection. We have used a multiphase fluid-flow numerical simulator to model water injection in a gas reservoir. Previous studies generally consider a single fluid, in which the relative permeabilities and capillary pressure play no role. We analyze the effects of partial saturation on the injection process. On the basis of a spatial distribution of weak stress zones and a threshold pore pressure, the simulator models fluid transport in the formation and allows us to obtain the spatiotemporal distribution of the microseismic events. We consider uniform and fractal distributions of the pore pressure at which microearthquakes are triggered. We analyze the influence of the initial water saturation and the presence of preexisting natural fractures, as well as the effect of updating the rock properties after the microseismic events occur. Moreover, we perform simulations in a low-permeability reservoir in which the borehole pressure increment generates a system of fractures that propagate into the reservoir. The importance of considering two-phase fluid flow resides in the fact that partial saturation greatly affects the trigger time evolution. This is mainly due to the difference in compressibility of the two phases.

2006 ◽  
Vol 9 (04) ◽  
pp. 295-301 ◽  
Author(s):  
Kewen Li ◽  
Kevin Chow ◽  
Roland N. Horne

Summary It has been a challenge to understand why recovery by spontaneous imbibition could both increase and decrease with initial water saturation. To this end, mathematical models were developed with porosity, permeability, viscosity, relative permeability, capillary pressure, and initial water saturation included. These equations foresee that recovery and imbibition rate can increase, remain unchanged, or decrease with an increase in initial water saturation, depending on rock properties, the quantity of residual gas saturation, the range of initial water saturation, and the units used in the definitions of gas recovery and imbibition rate. The theoretical predictions were verified experimentally by conducting spontaneous water imbibition at five different initial water saturations, ranging from 0 to approximately 50%. The effects of initial water saturation on residual saturation, relative permeability, capillary pressure, imbibition rate, and recovery in gas/water/rock systems by cocurrent spontaneous imbibition were investigated both theoretically and experimentally. Water-phase relative permeabilities and capillary pressures were calculated with the experimental data of spontaneous imbibition. Experimental results in different rocks were compared. Introduction Spontaneous water imbibition is an important mechanism during water injection. Prediction of recovery and imbibition rate by spontaneous water imbibition is essential to evaluate the feasibility and the performance of water injection. For example, is water injection effective in the case of high initial water saturation in reservoirs? Answers to such a question may be found by investigating the effect of initial water saturation on spontaneous water imbibition. It has been observed experimentally that initial water saturation affects recovery and production rate significantly (Blair 1964; Zhou et al. 2000; Viksund et al. 1998; Cil et al. 1998; Tong et al. 2001; Li and Firoozabadi 2000; Akin et al. 2000). However, the experimental observations from different authors (Zhou et al. 2000; Cil et al. 1998; Li and Firoozabadi 2000; Akin et al. 2000) are not consistent. On the other hand, few studies have investigated the effect of initial water saturation on recovery and imbibition rate theoretically, especially in gas reservoirs. Using numerical-simulation techniques, Blair (1964) found that the quantity and the rate of oil produced after a given period of imbibition increased with a decrease in initial water saturation for countercurrent spontaneous imbibition. Zhou et al. (2000) found that both imbibition rate and final oil recovery in terms of oil originally in place (OOIP) increased with an increase in initial water saturation, whereas oil recovery by waterflooding decreased. Viksund et al. (1998) found that the final oil recovery (OOIP) by spontaneous water imbibition in Berea sandstone showed little variation with a change in initial water saturation from 0 to approximately 30%. For the chalk samples tested by Viksund et al. (1998), the imbibition rate first increased with an increase in initial water saturation and then decreased slightly as initial water saturation increased above 34%.Cil et al. (1998) reported that the oil recovery (in terms of recoverable oil reserves) for zero and 20% initial water saturation showed insignificant differences in behavior. However, the oil recovery for initial water saturation above 20% increased with an increase in initial water saturation. Li and Firoozabadi (2000) found that the final gas recovery in the units of gas originally in place (GOIP) by spontaneous imbibition decreased with an increase in initial water saturation in both gas/oil/rock and gas/water/rock systems. The imbibition rate (GOIP/min) increased with an increase in initial water saturation at early time but decreased at later time. Akin et al. (2000) found that the residual oil saturation was unaffected significantly by initial water saturation. In this study, equations, derived theoretically, were used to study the effect of initial water saturation on gas recovery and imbibition rate. The equations correlate recovery, imbibition rate, initial water saturation, rock/fluid properties, and other parameters. Experiments of spontaneous water imbibition in gas-saturated rocks were conducted to confirm the theoretical predictions. The effect of rock properties on gas recovery and imbibition rate was also studied. An X-ray CT scanner was used to monitor the distribution of the initial water saturation to confirm that the initial distribution of the water saturation was uniform. In this study, we only focused on cocurrent spontaneous imbibition. It was assumed that there were no chemical reactions or mass transfer between gas and liquid.


Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050138
Author(s):  
QI ZHANG ◽  
XINYUE WU ◽  
QINGBANG MENG ◽  
YAN WANG ◽  
JIANCHAO CAI

Complicated gas–water transport behaviors in nanoporous shale media are known to be influenced by multiple transport mechanisms and pore structure characteristics. More accurate characterization of the fluid transport in shale reservoirs is essential to macroscale modeling for production prediction. This paper develops the analytical relative permeability models for gas–water two-phase in both organic and inorganic matter (OM and IM) of nanoporous shale using the fractal theory. Heterogeneous pore size distribution (PSD) of the shale media is considered instead of the tortuous capillaries with uniform diameters. The gas–water transport models for OM and IM are established, incorporating gas slippage described by second-order slip condition, water film thickness in IM, surface diffusion in OM, and the total organic carbon. Then, the presented model is validated by experimental results. After that, sensitivity analysis of gas–water transport behaviors based on pore structure properties of the shale sample is conducted, and the influence factors of fluid transport behaviors are discussed. The results show that the gas relative permeability is larger than 1 at the low pore pressure and water saturation. The larger pore pressure causes slight effect of gas slippage and surface diffusion on the gas relative permeability. The larger PSD fractal dimension of IM results in larger gas relative permeability and smaller water relative permeability. Besides, the large tortuosity fractal dimension will decrease the gas flux at the same water saturation, and the surface diffusion decreases with the increase of tortuosity fractal dimension of OM and pore pressure. The proposed models can provide an approach for macroscale modeling of the development of shale gas reservoirs.


2021 ◽  
Author(s):  
Davide Geremia ◽  
Christian David ◽  
Christophe Barnes ◽  
Beatriz Menéndez ◽  
Jérémie Dautriat ◽  
...  

<p>Monitoring of fluid movements in the crust is one of the most discussed topics in oil & gas industry as well as in geothermal systems and CO<sub>2</sub> storage, but still remains a challenge. The seismic method is one of the most common ways to detect the fluid migration. However, the use of ultrasonic monitoring at the sample scale in laboratory experiments persists as the most effective way to highlight large scale observations in which the boundary conditions are not well constrained.</p><p>To unravel the fluid effect on P-wave and S-wave velocity, we performed mechanical experiments coupled with ultrasonic monitoring on Obourg chalk from Mons basin (Belgium). Water injection tests under critical loading, imbibition tests and evaporation tests provided a full spectrum of observations of fluid-induced wave alteration in term of propagation time and attenuation.</p><p>The analysis of these experimental results showed that significant velocity dispersion and attenuation developed through variations in water saturation, and that these processes are linked to the presence of patches of water and air in the pore space.</p><p>We used the White’s formulation to model the relaxation effects due to spherical pockets of air homogeneously distributed in a water-saturated medium. In this framework, the pressure induced by the passing wave, produces a fluid flow across the water-air boundary with consequent energy loss.</p><p>This model reproduces both qualitatively and quantitatively the experimental results observed on the water injection tests. Indeed, it is shown that the progressive water saturation or desaturation of this chalk, generates a shift of the critical frequency (from the undrained relaxed towards unrelaxed regimes) which at some point matches the resonance frequency of the piezoelectric transducers used in the experimental setup (0.5 MHz). This phenomenon allowed us to get a continuous recording of the relaxation processes induced by saturation variations.</p><p>The outcomes of this work can significantly improve the actual knowledge on coupled effects of waves and fluids which is a crucial aspect of fluid monitoring in the context of reservoir evaluation and production.</p>


2021 ◽  
Vol 40 (9) ◽  
pp. 667-676
Author(s):  
Clay Kurison ◽  
Huseyin S. Kuleli

Microseismic events associated with shale reservoir hydraulic fracturing stimulation (HFS) are interpreted to be reactivations of ubiquitous natural fractures (NFs). Despite adoption of discrete fracture network (DFN) models, accounting for NFs in fluid flow within shale reservoirs has remained a challenge. For an explicit account of NFs, this study introduced the use of seismology-based relations linking seismic moment, moment magnitude, fault rupture area, and stress drop. Microseismic data from HFS monitoring of Marcellus Shale horizontal wells had been used to derive planar hydraulic fracture geometry and source properties. The former was integrated with associated well production data found to exhibit transient linear flow. Analytical solutions led to linear flow parameters (LFPs) and system permeability for scenarios depicting flow through infinite and finite conductivity hydraulic fractures. Published core plug permeability was stress-corrected for in-situ conditions to estimate average matrix permeability. For comparison, the burial and thermal history for the study area was used in 1D Darcy-based modeling of steady and episodic expulsion of petroleum to account for geologic timescale persistence of abnormal pore pressure. Both evaluations resulted in matrix permeability in the same picodarcy (pD) range. Coupled with LFPs, reactivated NF surface area for stochastic DFNs was estimated. Subsequently, the aforementioned seismology-based relations were used for determining average stress drops needed to estimate NF rupture area matching flow-based DFN surface areas. Stress drops, comparable to values for tectonic events, were excluded. One of the determined values matched stress drops for HFS operations in past and recent seismological studies. In addition, calculated changes in pore pressure matched estimates in the aforementioned studies. This study unlocked the full potential of microseismic data beyond extraction of planar geometry attributes and stimulated reservoir volume (SRV). Here, microseismic events were explicitly used in the quantitative account of NFs in fluid flow within shale reservoirs.


2021 ◽  
Vol 2092 (1) ◽  
pp. 012023
Author(s):  
A. Sakabekov ◽  
D. Ahmed Zaki ◽  
Y. Auzhani

Abstract We study initial and boundary value problem for nonlinear three dimensional two phase nonlinear filtration problem in three dimensional bounded regions. The reservoir is a two phase and three dimensional oil-water system that is been implemented with typical parallelepiped model. The reservoir constructed with different number of grid blocks in x, y and z directions and initialized with initial pressure, water saturation, corresponding fluid and rock properties in every grid block. To find approximate solution of the above mentioned problem we use finite difference method. We form solution’s algorithm of inverse problem for numerical parameter identification of the petroleum reservoir.


SPE Journal ◽  
2014 ◽  
Vol 19 (05) ◽  
pp. 793-802 ◽  
Author(s):  
Qihua Wu ◽  
Baojun Bai ◽  
Yinfa Ma ◽  
Jeong Tae Ok ◽  
Keith B. Neeves ◽  
...  

Summary Gas in tight sand and shale exists in underground reservoirs with microdarcy (µd) or even nanodarcy (nd) permeability ranges; these reservoirs are characterized by small pore throats and crack-like interconnections between pores. The size of the pore throats in shale may differ from the size of the saturating-fluid molecules by only slightly more than one order of magnitude. The physics of fluid flow in these rocks, with measured permeability in the nanodarcy range, is poorly understood. Knowing the fluid-flow behavior in the nanorange channels is of major importance for stimulation design, gas-production optimization, and calculations of the relative permeability of gas in tight shale-gas systems. In this work, a laboratory-on-chip approach for direct visualization of the fluid-flow behavior in nanochannels was developed with an advanced epi-fluorescence microscopy method combined with a nanofluidic chip. Displacements of two-phase flow in 100-nm-depth slit-like channels were reported. Specifically, the two-phase gas-slip effect was investigated. Under experimental conditions, the gas-slippage factor increased as the water saturation increased. The two-phase flow mechanism in 1D nanoscale slit-like channels was proposed and proved by the flow-pattern images. The results are crucial for permeability measurement and understanding fluid-flow behavior for unconventional shale-gas systems with nanoscale pores.


2020 ◽  
Vol 146 ◽  
pp. 03005
Author(s):  
Thomas Hiller ◽  
Gabriel Hoder ◽  
Alexandra Amann-Hildenbrand ◽  
Norbert Klitzsch ◽  
Norbert Schleifer

We present a newly developed high-pressure nuclear magnetic resonance (NMR) flow cell, which allows for the simultaneous determination of water saturation, effective gas permeability and NMR relaxation time distribution in two-phase fluid flow experiments. We introduce both the experimental setup and the experimental procedure on a tight Rotliegend sandstone sample. The initially fully water saturated sample is systematically drained by a stepwise increase of gas (Nitrogen) inlet pressure and the drainage process is continuously monitored by low field NMR relaxation measurements. After correction of the data for temperature fluctuations, the monitored changes in water saturation proved very accurate. The experimental procedure provides quantitative information about the total water saturation as well as about its distribution within the pore space at defined differential pressure conditions. Furthermore, the relationship between water saturation and relative (or effective) apparent permeability is directly determined.


Sign in / Sign up

Export Citation Format

Share Document