scholarly journals Numerical Identification of the Filtration Capacitive Parameters in Two-Phase Petroleum Reservoirs

2021 ◽  
Vol 2092 (1) ◽  
pp. 012023
Author(s):  
A. Sakabekov ◽  
D. Ahmed Zaki ◽  
Y. Auzhani

Abstract We study initial and boundary value problem for nonlinear three dimensional two phase nonlinear filtration problem in three dimensional bounded regions. The reservoir is a two phase and three dimensional oil-water system that is been implemented with typical parallelepiped model. The reservoir constructed with different number of grid blocks in x, y and z directions and initialized with initial pressure, water saturation, corresponding fluid and rock properties in every grid block. To find approximate solution of the above mentioned problem we use finite difference method. We form solution’s algorithm of inverse problem for numerical parameter identification of the petroleum reservoir.

Author(s):  
R.U. Rabaev ◽  
◽  
A.V. Chibisov ◽  
A.Yu. Kotenev ◽  
M.Yu. Kotenev ◽  
...  

The article presents the theoretical studies results of hydrochloric acid compositions filtration in carbonate collectors porous media saturated with two-phase formation liquid. Solution of filtration problem in the process of carbonate rock leaching with possible regulation of process by hydrocarbon solvents is considered. Numerical algorithm of acid effect on oil-saturated formation is proposed and tested, which allows to determine the following parameters of filtration flow: concentration of hydrochloric acid, distribution of water saturation, pressure and other parameters. A mathematical model of the carbonate collector dissolution process using composite solvents has been developed, which allows predicting technological indicators of acid impact efficiency.


Author(s):  
Ken S. Chen ◽  
Brian Carnes ◽  
Liang Hao ◽  
Gang Luo ◽  
Chao-Yang Wang

For the last couple of years, we have been working on developing and validating a three-dimensional, two-phase, comprehensive PEM (polymer electrolyte membrane) fuel cell model, and our efforts were funded by the US Department of Energy. In this paper, we provide an up-to-date progress report on our team efforts. Specifically, we present comparisons of simulation results (liquid-water saturation distribution) computed by our improved partially two-phase and fully two-phase models. We also present sample model-validation results by comparing model prediction with experimental data.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. KS183-KS189
Author(s):  
Lucas A. Macias ◽  
Juan E. Santos ◽  
Gabriela B. Savioli ◽  
José M. Carcione

Microseismic events along preexisting zones of weakness occur in a reservoir due to pore pressure buildup and fracturing during fluid injection. We have used a multiphase fluid-flow numerical simulator to model water injection in a gas reservoir. Previous studies generally consider a single fluid, in which the relative permeabilities and capillary pressure play no role. We analyze the effects of partial saturation on the injection process. On the basis of a spatial distribution of weak stress zones and a threshold pore pressure, the simulator models fluid transport in the formation and allows us to obtain the spatiotemporal distribution of the microseismic events. We consider uniform and fractal distributions of the pore pressure at which microearthquakes are triggered. We analyze the influence of the initial water saturation and the presence of preexisting natural fractures, as well as the effect of updating the rock properties after the microseismic events occur. Moreover, we perform simulations in a low-permeability reservoir in which the borehole pressure increment generates a system of fractures that propagate into the reservoir. The importance of considering two-phase fluid flow resides in the fact that partial saturation greatly affects the trigger time evolution. This is mainly due to the difference in compressibility of the two phases.


2021 ◽  
Vol 2 (2) ◽  
pp. 201-209
Author(s):  
Mikhail N. Petrov ◽  
Galina V. Nesterova ◽  
Igor N. Yeltsov

The paper considers a numerical model of two-phase filtration in a fractured reservoir, exposed by downhole drilling on overbalance. An assessment of the distribution of reservoir pressure, water saturation, salt concentration in the near-wellbore zone is given, taking into account the features of the model.


2016 ◽  
Vol 11 (1) ◽  
pp. 60-65 ◽  
Author(s):  
R.Kh. Bolotnova ◽  
E.F. Gainullina

The spherical explosion propagation process in aqueous foam with the initial water volume content α10=0.0083 corresponding to the experimental conditions is analyzed numerically. The solution method is based on the one-dimensional two-temperature spherically symmetric model for two-phase gas-liquid mixture. The numerical simulation is built by the shock capturing method and movable Lagrangian grids. The amplitude and the width of the initial pressure pulse are found from the amount of experimental explosive energy. The numerical modeling results are compared to the real experiment. It’s shown, that the foam compression in the shock wave leads to the significant decrease in velocity and in amplitude of the shock wave.


Author(s):  
Tamas Szili-Torok ◽  
Jens Rump ◽  
Torsten Luther ◽  
Sing-Chien Yap

Abstract Better understanding of the lead curvature, movement and their spatial distribution may be beneficial in developing lead testing methods, guiding implantations and improving life expectancy of implanted leads. Objective The aim of this two-phase study was to develop and test a novel biplane cine-fluoroscopy-based method to evaluate input parameters for bending stress in leads based on their in vivo 3D motion using precisely determined spatial distributions of lead curvatures. Potential tensile, compressive or torque forces were not subjects of this study. Methods A method to measure lead curvature and curvature evolution was initially tested in a phantom study. In the second phase using this model 51 patients with implanted ICD leads were included. A biplane cine-fluoroscopy recording of the intracardiac region of the lead was performed. The lead centerline and its motion were reconstructed in 3D and used to define lead curvature and curvature changes. The maximum absolute curvature Cmax during a cardiac cycle, the maximum curvature amplitude Camp and the maximum curvature Cmax@amp at the location of Camp were calculated. These parameters can be used to characterize fatigue stress in a lead under cyclical bending. Results The medians of Camp and Cmax@amp were 0.18 cm−1 and 0.42 cm−1, respectively. The median location of Cmax was in the atrium whereas the median location of Camp occurred close to where the transit through the tricuspid valve can be assumed. Increased curvatures were found for higher slack grades. Conclusion Our results suggest that reconstruction of 3D ICD lead motion is feasible using biplane cine-fluoroscopy. Lead curvatures can be computed with high accuracy and the results can be implemented to improve lead design and testing.


2021 ◽  
Vol 11 (15) ◽  
pp. 6972
Author(s):  
Lihua Cui ◽  
Fei Ma ◽  
Tengfei Cai

The cavitation phenomenon of the self-resonating waterjet for the modulation of erosion characteristics is investigated in this paper. A three-dimensional computational fluid dynamics (CFD) model was developed to analyze the unsteady characteristics of the self-resonating jet. The numerical model employs the mixture two-phase model, coupling the realizable turbulence model and Schnerr–Sauer cavitation model. Collected data from experimental tests were used to validate the model. Results of numerical simulations and experimental data frequency bands obtained by the Fast Fourier transform (FFT) method were in very good agreement. For better understanding the physical phenomena, the velocity, the pressure distributions, and the cavitation characteristics were investigated. The obtained results show that the sudden change of the flow velocity at the outlet of the nozzle leads to the forms of the low-pressure zone. When the pressure at the low-pressure zone is lower than the vapor pressure, the cavitation occurs. The flow field structure of the waterjet can be directly perceived through simulation, which can provide theoretical support for realizing the modulation of the erosion characteristics, optimizing nozzle structure.


1967 ◽  
Vol 89 (4) ◽  
pp. 577-586 ◽  
Author(s):  
P. Cooper

A model is developed for analytically determining pump inducer performance in both the single-phase and cavitating flow regimes. An equation of state for vaporizing flow is used in an approximate, three-dimensional analysis of the flow field. The method accounts for losses and yields internal distributions of fluid pressure, velocity, and density together with the resulting overall efficiency and pressure rise. The results of calculated performance of two sample inducers are presented. Comparison with recent theory for fluid thermal effects on suction head requirements is made with the aid of a resulting dimensionless vaporization parameter.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Yoon Jo Kim ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov ◽  
Young-Joon Lee ◽  
Sung-Kyu Lim

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.


Sign in / Sign up

Export Citation Format

Share Document