Nonlinear inversion of seismic amplitude variation with offset for an effective stress parameter

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. R299-R311
Author(s):  
Huaizhen Chen ◽  
Junxiao Li ◽  
Kristopher A. Innanen

Effective stress estimates play important roles in reservoir characterization, for instance, in guiding the selection of fracturing areas in unconventional reservoirs. Based on Gassmann’s fluid substitution model, we have set up a workflow for nonlinear inversion of seismic data for dry rock moduli, fluid factors, and a stress-sensitive parameter. We first make an approximation within the fluid substitution equation, replacing the porosity term with a stress-sensitive parameter. We then derive a linearized reflection coefficient as a function of a stress-parameter reflectivity and reexpress it in terms of elastic impedance (EI). An amplitude-variation-with-offset (AVO) inversion workflow is set up, in which the seismic data are transformed to EI, after stacking within five incidence angle ranges; these are then inverted to determine the stress-sensitive parameter. The two-step process involves two inversions with significantly different properties. The first is a model-based least-squares inversion to estimate EI; the second is a more complex nonlinear inversion of the EI for a set of unknowns including the stress-sensitive parameter. Motivated by an interest in hybridizing AVO and full-waveform inversion (FWI), we set the latter step up to resemble some features of a published AVO-FWI formulation. The approach is subjected to synthetic validation, which permits us to analyze the response and test the stability of the workflow. We finally apply the workflow to real data acquired over a gas-bearing reservoir, which reveals that the approach generates potential indicators of fluid presence and stress prediction.

2022 ◽  
Author(s):  
Lamees N. Abdulkareem ◽  

Amplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the controlling parameter on the AVO analysis. AVO cross plots from the real pre-stack seismic data reveal AVO class IV (showing a negative intercept decreasing with offset). This result matches our modelled result of fluid substitution for the seismic synthetics. It is concluded that fluid substitution is the controlling parameter on the AVO analysis and therefore, the high amplitude anomaly on the seabed and the target horizon 9 is the result of changing the fluid content and the lithology along the target horizons. While changing the porosity has little effect on the amplitude variation with offset within the AVO cross plot. Finally, results from the wedge models show that a small change of thickness causes a change in the amplitude; however, this change in thickness gives a different AVO characteristic and a mismatch with the AVO result of the real 2D pre-stack seismic data. Therefore, a constant thin layer with changing fluids is more likely to be the cause of the high amplitude anomalies.


2019 ◽  
Vol 16 (6) ◽  
pp. 1084-1093
Author(s):  
Chao Xu ◽  
Chunqiang Chen ◽  
Jixin Deng ◽  
Bangrang Di ◽  
Jianxin Wei

Abstract The 3D pre-stack seismic data from a physical modeling experiment were employed to investigate the effect of reservoir scales on AVO (amplitude variation with offset or incidence angle). Eight cuboid samples simulating cavernous reservoirs with different widths and the same thickness and elastic parameters were set within a 3D model. 3D seismic data acquisition and processing were conducted. To get the AVO responses of the samples with different widths, trough amplitudes corresponding to the sample tops at different incidence angles were extracted from the pre-stack angle gathers. Amplitude calibration for transducer radiation patterns was conducted on the extracted amplitudes at different angles. AVO analysis was conducted to quantitatively demonstrate the effect of sample scales on AVO characteristics. The effect of sample width was weak when the width was less than 60 m, which was 3/5 of the wavelength. When the width was larger than 60 m, both AVO intercept and gradient gradually increased with the sample width. The AVO gradient peaked at 150 m, which was 1.5 times the wavelength. Cross-plot analysis of AVO intercept and gradient showed the samples were aligned in a straight line when the sample width was less than twice the seismic wavelength. The result in this study partially verified the conclusions of reservoir scale effect on AVO responses drawn from previous numerical modelling studies. For a heterogeneous rectangular reservoir, the effect of reservoir scales on AVO responses could potentially be used to quantitatively estimate reservoir scale.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. V201-V221 ◽  
Author(s):  
Mehdi Aharchaou ◽  
Erik Neumann

Broadband preprocessing has become widely used for marine towed-streamer seismic data. In the standard workflow, far-field source designature, receiver and source-side deghosting, and redatuming to mean sea level are applied in sequence, with amplitude compensation for background [Formula: see text] delayed until the imaging or postmigration stages. Thus, each step is likely to generate its own artifacts, quality checking can be time-consuming, and broadband data are only obtained late in this chained workflow. We have developed a unified method for broadband preprocessing — called integrated broadband preprocessing (IBP) — which enables the joint application of all the above listed steps early in the processing sequence. The amplitude, phase, and amplitude-variation-with-offset fidelity of IBP are demonstrated on pressure data from the shallow, deep, and slanted streamers. The integration allows greater sparsity to emerge in the representation of seismic data, conferring clear benefits over the sequential application. Moreover, time sparsity, full dimensionality, and early amplitude [Formula: see text] compensation all have an impact on broadband data quality, in terms of reduced ringing artifacts, improved wavelet integrity at large crossline angles, and fewer residual high-frequency multiples.


2019 ◽  
Vol 9 (24) ◽  
pp. 5485
Author(s):  
Xiaobo Liu ◽  
Jingyi Chen ◽  
Fuping Liu ◽  
Zhencong Zhao

Seismic velocities are related to the solid matrices and the pore fluids. The bulk and shear moduli of dry rock are the primary parameters to characterize solid matrices. Amplitude variation with offset (AVO) or amplitude variation with incidence angle (AVA) is the most used inversion method to discriminate lithology in hydrocarbon reservoirs. The bulk and shear moduli of dry rock, however, cannot be inverted directly using seismic data and the conventional AVO/AVA inversions. The most important step to accurately invert these dry rock parameters is to derive the Jacobian matrix. The combination of exact Zoeppritz and Biot–Gassmann equations makes it possible to directly calculate the partial derivatives of seismic reflectivities (PP-and PS-waves) with respect to dry rock moduli. During this research, we successfully derive the accurate partial derivatives of the exact Zoeppritz equations with respect to bulk and shear moduli of dry rock. The characteristics of these partial derivatives are investigated in the numerical examples. Additionally, we compare the partial derivatives using this proposed algorithm with the classical Shuey and Aki–Richards approximations. The results show that this derived Jacobian matrix is more accurate and versatile. It can be used further in the conventional AVO/AVA inversions to invert bulk and shear moduli of dry rock directly.


Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. R151-R163 ◽  
Author(s):  
Javad Rezaie ◽  
Jo Eidsvik ◽  
Tapan Mukerji

Information analysis can be used in the context of reservoir decisions under uncertainty to evaluate whether additional data (e.g., seismic data) are likely to be useful in impacting the decision. Such evaluation of geophysical information sources depends on input modeling assumptions. We studied results for Bayesian inversion and value of information analysis when the input distributions are skewed and non-Gaussian. Reservoir parameters and seismic amplitudes are often skewed and using models that capture the skewness of distributions, the input assumptions are less restrictive and the results are more reliable. We examined the general methodology for value of information analysis using closed skew normal (SN) distributions. As an example, we found a numerical case with porosity and saturation as reservoir variables and computed the value of information for seismic amplitude variation with offset intercept and gradient, all modeled with closed SN distributions. Sensitivity of the value of information analysis to skewness, mean values, accuracy, and correlation parameters is performed. Simulation results showed that fewer degrees of freedom in the reservoir model results in higher value of information, and seismic data are less valuable when seismic measurements are spatially correlated. In our test, the value of information was approximately eight times larger for a spatial-dependent reservoir variable compared with the independent case.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. C153-C162 ◽  
Author(s):  
Shibo Xu ◽  
Alexey Stovas ◽  
Hitoshi Mikada

Wavefield properties such as traveltime and relative geometric spreading (traveltime derivatives) are highly essential in seismic data processing and can be used in stacking, time-domain migration, and amplitude variation with offset analysis. Due to the complexity of an elastic orthorhombic (ORT) medium, analysis of these properties becomes reasonably difficult, where accurate explicit-form approximations are highly recommended. We have defined the shifted hyperbola form, Taylor series (TS), and the rational form (RF) approximations for P-wave traveltime and relative geometric spreading in an elastic ORT model. Because the parametric form expression for the P-wave vertical slowness in the derivation is too complicated, TS (expansion in offset) is applied to facilitate the derivation of approximate coefficients. The same approximation forms computed in the acoustic ORT model also are derived for comparison. In the numerical tests, three ORT models with parameters obtained from real data are used to test the accuracy of each approximation. The numerical examples yield results in which, apart from the error along the y-axis in ORT model 2 for the relative geometric spreading, the RF approximations all are very accurate for all of the tested models in practical applications.


2017 ◽  
Vol 5 (4) ◽  
pp. T531-T544
Author(s):  
Ali H. Al-Gawas ◽  
Abdullatif A. Al-Shuhail

The late Carboniferous clastic Unayzah-C in eastern central Saudi Arabia is a low-porosity, possibly fractured reservoir. Mapping the Unayzah-C is a challenge due to the low signal-to-noise ratio (S/N) and limited bandwidth in the conventional 3D seismic data. A related challenge is delineating and characterizing fracture zones within the Unayzah-C. Full-azimuth 3D broadband seismic data were acquired using point receivers, low-frequency sweeps down to 2 Hz, and 6 km patch geometry. The data indicate significant enhancement in continuity and resolution of the reflection data, leading to improved mapping of the Unayzah-C. Because the data set has a rectangular patch geometry with full inline offsets to 6000 m, using amplitude variation with offset and azimuth (AVOA) may be effective to delineate and characterize fracture zones within Unayzah-A and Unayzah-C. The study was undertaken to determine the improvement of wide-azimuth seismic data in fracture detection in clastic reservoirs. The results were validated with available well data including borehole images, well tests, and production data in the Unayzah-A. There are no production data or borehole images within the Unayzah-C. For validation, we had to refer to a comparison of alternative seismic fracture detection methods, mainly curvature and coherence. Anisotropy was found to be weak, which may be due to noise, clastic lithology, and heterogeneity of the reservoirs, in both reservoirs except for along the western steep flank of the study area. These may correspond to some north–south-trending faults suggested by circulation loss and borehole image data in a few wells. The orientation of the long axis of the anisotropy ellipses is northwest–southeast, and it is not in agreement with the north–south structural trend. No correlation was found among the curvature, coherence, and AVOA in Unayzah-A or Unayzah-C. Some possible explanations for the low correlation between the AVOA ellipticity and the natural fractures are a noisy data set, overburden anisotropy, heterogeneity, granulation seams, and deformation.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. V197-V206 ◽  
Author(s):  
Ali Gholami ◽  
Milad Farshad

The traditional hyperbolic Radon transform (RT) decomposes seismic data into a sum of constant amplitude basis functions. This limits the performance of the transform when dealing with real data in which the reflection amplitudes include the amplitude variation with offset (AVO) variations. We adopted the Shuey-Radon transform as a combination of the RT and Shuey’s approximation of reflectivity to accurately model reflections including AVO effects. The new transform splits the seismic gather into three Radon panels: The first models the reflections at zero offset, and the other two panels add capability to model the AVO gradient and curvature. There are two main advantages of the Shuey-Radon transform over similar algorithms, which are based on a polynomial expansion of the AVO response. (1) It is able to model reflections more accurately. This leads to more focused coefficients in the transform domain and hence provides more accurate processing results. (2) Unlike polynomial-based approaches, the coefficients of the Shuey-Radon transform are directly connected to the classic AVO parameters (intercept, gradient, and curvature). Therefore, the resulting coefficients can further be used for interpretation purposes. The solution of the new transform is defined via an underdetermined linear system of equations. It is formulated as a sparsity-promoting optimization, and it is solved efficiently using an orthogonal matching pursuit algorithm. Applications to different numerical experiments indicate that the Shuey-Radon transform outperforms the polynomial and conventional RTs.


2017 ◽  
Vol 5 (3) ◽  
pp. SL43-SL56 ◽  
Author(s):  
Dries Gisolf ◽  
Peter R. Haffinger ◽  
Panos Doulgeris

Wave-equation-based amplitude-variation-with-offset (AVO) inversion solves the full elastic wave equation, for the properties as well as the total wavefield in the object domain, from a set of observations. The relationship between the data and the property set to invert for is essentially nonlinear. This makes wave-equation-based inversion a nonlinear process. One way of visualizing this nonlinearity is by noting that all internal multiple scattering and mode conversions, as well as traveltime differences between the real medium and the background medium, are accounted for by the wave equation. We have developed an iterative solution to this nonlinear inversion problem that seems less likely to be trapped in local minima. The surface recorded data are preconditioned to be more representative for the target interval, by redatuming, or migration. The starting model for the inversion is a very smooth (0–4 Hz) background model constructed from well data. Depending on the data quality, the nonlinear inversion may even update the background model, leading to a broadband solution. Because we are dealing with the elastic wave equation and not a linearized data model in terms of primary reflections, the inversion solves directly for the parameters defining the wave equation: the compressibility (1/bulk modulus) and the shear compliance (1/shear modulus). These parameters are much more directly representative for hydrocarbon saturation, porosity, and lithology, than derived properties such as acoustic and shear impedance that logically follow from the linearized reflectivity model. Because of the strongly nonlinear character of time-lapse effects, wave-equation based AVO inversion is particularly suitable for time-lapse inversion. Our method is presented and illustrated with some synthetic data and three real data case studies.


2021 ◽  
Vol 40 (4) ◽  
pp. 277-286
Author(s):  
Haiyang Wang ◽  
Olivier Burtz ◽  
Partha Routh ◽  
Don Wang ◽  
Jake Violet ◽  
...  

Elastic properties from seismic data are important to determine subsurface hydrocarbon presence and have become increasingly important for detailed reservoir characterization that aids to derisk specific hydrocarbon prospects. Traditional techniques to extract elastic properties from seismic data typically use linear inversion of imaged products (migrated angle stacks). In this research, we attempt to get closer to Tarantola's visionary goal for full-wavefield inversion (FWI) by directly obtaining 3D elastic properties from seismic shot-gather data with limited well information. First, we present a realistic 2D synthetic example to show the need for elastic physics in a strongly elastic medium. Then, a 3D field example from deepwater West Africa is used to validate our workflow, which can be practically used in today's computing architecture. To enable reservoir characterization, we produce elastic products in a cascaded manner and run 3D elastic FWI up to 50 Hz. We demonstrate that reliable and high-resolution P-wave velocity can be retrieved in a strongly elastic setting (i.e., with a class 2 or 2P amplitude variation with offset response) in addition to higher-quality estimation of P-impedance and VP/VS ratio. These parameters can be directly used in interpretation, lithology, and fluid prediction.


Sign in / Sign up

Export Citation Format

Share Document