Velocity model building for a single-offset 3C VSP data via deformable-layer tomography: a Texas salt dome example

Geophysics ◽  
2021 ◽  
pp. 1-44
Author(s):  
Yukai Wo ◽  
Jingjing Zong ◽  
Hao Hu ◽  
Hua-Wei Zhou ◽  
Robert R. Stewart

We have applied multiscale deformable-layer tomography (DLT) to build a laterally varying velocity model, using a single-offset vertical seismic profile (VSP) data set acquired for a salt proximity survey in southern Texas. The purpose of the VSP survey is to delineate the 2D salt flank using the P-wave reflections. Previous study has identified an anhydrate layer as the cap rock of the salt dome. The large impedance contrasts of this anhydrite layer generate strong downgoing P (sediment)-S (anhydrite)-P (salt) waves recorded by downhole geophones. Incidentally, the P-S-P-waves have similar traveltimes as those of the P-wave salt flank reflections, thus contaminating the imaging of the salt flank. Identifying shear-mode contamination requires an accurate velocity model of anhydrite. However, the extremely poor coverage of the single-offset VSP greatly challenges tomographic techniques to determine the lateral velocity variation. We tackle this problem using multiscale DLT, which characterizes the velocity field by a set of deformable layers. We constrain the layer velocities using the check-shot data and invert for the geometric variation. The inverted model indicates that the anhydrite layer has a “thick-thin-thick” lateral variation with offset, and the S-wave in the anhydrite layer helps in imaging the P-S-P-waves along the well track. The estimated anhydrite layer geometry is validated by the kinematic accuracies of P-waves in the data domain and P-S-P-waves in the image domain. Some in-salt dipping structures are determined by multiscale DLT as well. This field data example indicates that multiscale DLT is feasible for estimating velocities using VSP data of the single-offset situation. An accurate velocity model is the key for modeling and adaptive subtraction of the shear-mode contamination related to the salt geometry.

Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1695-1707 ◽  
Author(s):  
David Sheley ◽  
Gerard T. Schuster

We develop the novel theory of transmitted PS migration and show that PS transmitted arrivals in a Gulf of Mexico vertical seismic profile (VSP) data set can be migrated to accurately image a salt sheet even though the receiver array is below the transmitting boundary. We also show that migrating transmitted arrivals is effective in illuminating the base of an orebody invisible to PP reflections. In general, interfaces that bisect wavepath propagation (i.e., the source and receiver are on opposite sides of the interface and therefore invisible to PP reflections) can be imaged by migration of PS transmitted waves. These results suggest that migration of PS transmitted waves opens new opportunities in imaging nearly vertical impedance boundaries that are typically invisible to conventional reflection imaging of crosswell and VSP data. We also present a new interferometric method, denoted as reduced‐time migration, which uses the arrival‐time difference between the direct P‐wave and subsequent events to increase migration accuracy. Reduced‐time migration removes static time shifts in the data, decreases the focusing error due to an incorrect migration velocity model, and relocates reflection or PS transmission events to be closer to their true positions. Although limited to crosswell and VSP geometries, synthetic‐ and field‐data examples show that reduced‐time migration is noticeably more accurate than conventional migration in the presence of static shifts and/or migration velocity errors. The main assumption of reduced‐time migration is that the direct wave samples errors which are representative of errors in the migration aperture. Transmission wavepaths, in general, are subparallel to the direct wave and therefore the two modes encounter similar errors and, hence, reduced‐time migration is effective in improving the focusing of migration energy. For the PP reflection case, the direct wave and the reflected waves often traverse different parts of the earth, therefore, reduced‐time migration will remove static shifts but it is not expected to mitigate velocity errors if the errors are spatially variant. However, if there is a general and consistent bias in the velocity model, reduced‐time migration is expected to deliver improved results over conventional Kirchhoff migration.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 821-836 ◽  
Author(s):  
I. Janutyte ◽  
E. Kozlovskaya ◽  
M. Majdanski ◽  
P. H. Voss ◽  
M. Budraitis ◽  
...  

Abstract. The presented study is a part of the passive seismic experiment PASSEQ 2006–2008, which took place around the Trans-European Suture Zone (TESZ) from May 2006 to June 2008. The data set of 4195 manually picked arrivals of teleseismic P waves of 101 earthquakes (EQs) recorded in the seismic stations deployed to the east of the TESZ was inverted using the non-linear teleseismic tomography algorithm TELINV. Two 3-D crustal models were used to estimate the crustal travel time (TT) corrections. As a result, we obtain a model of P-wave velocity variations in the upper mantle beneath the TESZ and the East European Craton (EEC). In the study area beneath the craton, we observe up to 3% higher and beneath the TESZ about 2–3% lower seismic velocities compared to the IASP91 velocity model. We find the seismic lithosphere–asthenosphere boundary (LAB) beneath the TESZ at a depth of about 180 km, while we observe no seismic LAB beneath the EEC. The inversion results obtained with the real and the synthetic data sets indicate a ramp shape of the LAB in the northern TESZ, where we observe values of seismic velocities close to those of the craton down to about 150 km. The lithosphere thickness in the EEC increases going from the TESZ to the NE from about 180 km beneath Poland to 300 km or more beneath Lithuania. Moreover, in western Lithuania we find an indication of an upper-mantle dome. In our results, the crustal units are not well resolved. There are no clear indications of the features in the upper mantle which could be related to the crustal units in the study area. On the other hand, at a depth of 120–150 km we indicate a trace of a boundary of proposed palaeosubduction zone between the East Lithuanian Domain (EL) and the West Lithuanian Granulite Domain (WLG). Also, in our results, we may have identified two anorogenic granitoid plutons.


1991 ◽  
Vol 81 (2) ◽  
pp. 508-523
Author(s):  
Jim Mori

Abstract Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley, California. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequences appear to have similar depth distribution in the range of 4 to 10 km.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


2019 ◽  
Vol 133 ◽  
pp. 01011
Author(s):  
Jakub Kokowski ◽  
Zbigniew Szreder ◽  
Elżbieta Pilecka

In the study, the determining of the reference velocity of the P-wave in coal seams used in seismic profiling to assess increases and decreases in relative stresses at large depths has been presented. The seismic profiling method proposed by Dubinski in 1989 covers a range of depth up to 970 m. At present, coal seams exploitation in Polish coal mines is conducted at greater depths, even exceeding 1200 m, which creates the necessity for a new reference velocity model. The study presents an empirical mathematical model of the change of the P-wave velocity in coal seams in the geological conditions of the Jastrzebie coal mine. A power model analogous to the Dubinski’s one was elaborated with new constants. The calculations included the results from 35 measurements of seismic profiling carried out in various coal seams of the Jastrzebie mine at depths from 640 to 1200 m. The results obtained cause changes in the result of calculations of seismic anomalies. Future validation of the proposed model with larger data set will be required.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1172-1180 ◽  
Author(s):  
W. Scott Leaney ◽  
Colin M. Sayers ◽  
Douglas E. Miller

Multioffset vertical seismic profile (VSP) experiments, commonly referred to as walkaways, enable anisotropy to be measured reliably in the field. The results can be fed into modeling programs to study the impact of anisotropy on velocity analysis, migration, and amplitude versus offset (AVO). Properly designed multioffset VSPs can also provide the target AVO response measured under optimum conditions, since the wavelet is recorded just above the reflectors of interest with minimal reflection point dispersal. In this paper, the multioffset VSP technique is extended to include multioffset azimuths, and a multiazimuthal multiple VSP data set acquired over a carbonate reservoir is analyzed for P-wave anisotropy and AVO. Direct arrival times down to the overlying shale and reflection times and amplitudes from the carbonate are analyzed. Data analysis involves a three‐term fit to account for nonhyperbolic moveout, dip, and azimuthal anisotropy. Results indicate that the overlying shale is transversely isotropic with a vertical axis of symmetry (VTI), while the carbonate shows 4–5% azimuthal anisotropy in traveltimes. The fast direction is consistent with the maximum horizontal stress orientation determined from break‐out logs and is also consistent with the strike of major faults. AVO analysis of the reflection from the top of the carbonate layer shows a critical angle reduction in the fast direction and maximum gradient in the slow direction. This agrees with modeling and indicates a greater amplitude sensitivity in the slow direction—the direction perpendicular to fracture strike. In principle, 3-D surveys should have wide azimuthal coverage to characterize fractured reservoirs. If this is not possible, it is important to have azimuthal line coverage in the minimum horizontal stress direction to optimize the use of AVO for fractured reservoir characterization. This direction can be obtained from multiazimuthal walkaways using the azimuthal P-wave analysis techniques presented.


Geophysics ◽  
2003 ◽  
Vol 68 (3) ◽  
pp. 1022-1031 ◽  
Author(s):  
Pawan Dewangan ◽  
Vladimir Grechka

Vertical seismic profiling (VSP), an established technique, can be used for estimating in‐situ anisotropy that might provide valuable information for characterization of reservoir lithology, fractures, and fluids. The P‐wave slowness components, conventionally measured in multiazimuth, walkaway VSP surveys, allow one to reconstruct some portion of the corresponding slowness surface. A major limitation of this technique is that the P‐wave slowness surface alone does not constrain a number of stiffness coefficients that may be crucial for inferring certain rock properties. Those stiffnesses can be obtained only by combining the measurements of P‐waves with those of S (or PS) modes. Here, we extend the idea of Horne and Leaney, who proved the feasibility of joint inversion of the slowness and polarization vectors of P‐ and SV‐waves for parameters of transversely isotropic media with a vertical symmetry axis (VTI symmetry). We show that there is no need to assume a priori VTI symmetry or any other specific type of anisotropy. Given a sufficient polar and azimuthal coverage of the data, the polarizations and slownesses of P and two split shear (S1 and S2) waves are sufficient for estimating all 21 elastic stiffness coefficients cij that characterize the most general triclinic anisotropy. The inverted stiffnesses themselves indicate whether or not the data can be described by a higher‐symmetry model. We discuss three different scenarios of inverting noise‐contaminated data. First, we assume that the layers are horizontal and laterally homogeneous so that the horizontal slownesses measured at the surface are preserved at the receiver locations. This leads to a linear inversion scheme for the elastic stiffness tensor c. Second, if the S‐wave horizontal slowness at the receiver location is unknown, the elastic tensor c can be estimated in a nonlinear fashion simultaneously with obtaining the horizontal slowness components of S‐waves. The third scenario includes the nonlinear inversion for c using only the vertical slowness components and the polarization vectors of P‐ and S‐waves. We find the inversion to be stable and robust for the first and second scenarios. In contrast, errors in the estimated stiffnesses increase substantially when the horizontal slowness components of both P‐ and S‐waves are unknown. We apply our methodology to a multiazimuth, multicomponent VSP data set acquired in Vacuum field, New Mexico, and show that the medium at the receiver level can be approximated by an azimuthally rotated orthorhombic model.


2020 ◽  
Author(s):  
Senad Subašić ◽  
Meysam Rezaeifar ◽  
Nicola Piana Agostinetti ◽  
Sergei Lebedev ◽  
Christopher Bean

<p>We present a 3D P-wave velocity model of the crust and uppermost mantle below Ireland. In the absence of local earthquakes, we used quarry and mining blasts recorded on permanent stations in the Irish National Seismic Network (INSN) and during various temporary deployments. We compiled a database of 1,100 events and around 20,000 P-wave arrivals, with each event associated with a known quarry. The source location uncertainty is therefore minimal. Both source and receiver locations are fixed in time and we used repeating events to estimate the travel time uncertainty for each source-receiver combination. We created a starting 1D velocity model from previously available data, and then used VELEST to calculate a preliminary minimum 1D velocity model. The 1D velocity model enabled us to remove outliers from the data set, and to calculate the final minimum 1D model used as the initial model in the 3D tomographic inversion. The resulting 3D P-wave velocity model will shed new light on the 3D crustal structure of Ireland.</p>


2020 ◽  
Author(s):  
Vera Lay ◽  
Stefan Buske ◽  
Sascha Barbara Bodenburg ◽  
Franz Kleine ◽  
John Townend ◽  
...  

<p>The Alpine Fault along the West Coast of the South Island (New Zealand) is a major plate boundary that is expected to rupture in the next 50 years, likely as a magnitude 8 earthquake. The Deep Fault Drilling Project (DFDP) aims to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth.  </p><p>Here we present results from a 3D seismic survey around the DFDP-2 drill site in the Whataroa Valley where the drillhole penetrated almost down to the fault surface. Within the glacial valley, we collected 3D seismic data to constrain valley structures that were obscured in previous 2D seismic data. The new data consist of a 3D extended vertical seismic profiling (VSP) survey using three-component receivers and a fibre optic cable in the DFDP-2B borehole as well as a variety of receivers at the surface.</p><p>The data set enables us to derive a reliable 3D P-wave velocity model by first-arrival travel time tomography. We identify a 100-460 m thick sediment layer (average velocity 2200±400 m/s) above the basement (average velocity 4200±500 m/s). Particularly on the western valley side, a region of high velocities steeply rises to the surface and mimics the topography. We interpret this to be the infilled flank of the glacial valley that has been eroded into the basement. In general, the 3D structures implied by the velocity model on the upthrown (Pacific Plate) side of the Alpine Fault correlate well with the surface topography and borehole findings.</p><p>A reliable velocity model is not only valuable by itself but it is also required as input for prestack depth migration (PSDM). We performed PSDM with a part of the 3D data set to derive a structural image of the subsurface within the Whataroa Valley. The top of the basement identified in the P-wave velocity model coincides well with reflectors in the migrated images so that we can analyse the geometry of the basement in detail.</p>


Sign in / Sign up

Export Citation Format

Share Document