Depth migration as a valuable tool for prospect derisking in the Colombian Foothills

2017 ◽  
Vol 5 (4) ◽  
pp. SR13-SR21
Author(s):  
Sergio Ibanez Poveda ◽  
Mario Patino ◽  
John Mathewson

Interpreting land seismic data in the Colombian Foothills poses many challenges. Very often, the data have a low signal-to-noise ratio and the subsurface prospective structures are significantly complex. The level of uncertainty can be so high that even experienced interpreters struggle to reconcile the seismic image with their geologic models. Based on previous knowledge and “fast-track” interpretation of old 2D prestack time migration data (no 3D seismic in the area), we identified two interesting plays for further analysis: a triangular zone (play 1) and subthrust anticlines beneath the frontal fault (play 2). Derisking the different prospects associated with plays 1 and 2 required the application of prestack depth migration (PSDM), which reduce uncertainty regarding the position of the structures, their depth, and even their existence. The seismic image in play 1 structures was improved significantly with better definition of the flanks of the anticlines and the frontal closure of the structures, more coherent events, and sharper definition in fault cut-offs. Some apparent play 2 prospects, that were actually “velocity pull-up” anticlines, were corrected by the depth-migration workflow, whereas other structures experience important modifications in their geometry. In both types of plays, depth migration dramatically changed the initial assessment of prospectivity. Based on the better agreement between seismic and borehole data, significant reduction in residual moveout on final PSDM gathers and more coherent seismic images, we believe that the use of depth migration has allowed us to obtain a more accurate representation of the subsurface, and consequently a more rigorous reserves estimation. The use of PSDM was essential to understand the complexities in the prospects evaluated and the risk associated with their exploration. We consider the lessons learned in this study applicable to similar geologic environments worldwide.

2015 ◽  
Vol 3 (1) ◽  
pp. SB29-SB37 ◽  
Author(s):  
Bob A. Hardage

Structural interpretation of seismic data presents numerous opportunities for encountering interpretational pitfalls, particularly when a seismic image does not have an appropriate signal-to-noise ratio (S/N), or when a subsurface structure is unexpectedly complex. When both conditions exist — low S/N data and severe structural deformation — interpretation pitfalls are almost guaranteed. We analyzed an interpretation done 20 years ago that had to deal with poor seismic data quality and extreme distortion of strata. The lessons learned still apply today. Two things helped the interpretation team develop a viable structural model of the prospect. First, existing industry-accepted formation tops assigned to regional wells were rejected and new log interpretations were done to detect evidence of repeated sections and overturned strata. Second, the frequency content of the 3D seismic data volume was restricted to only the first octave of its seismic spectrum to create better evidence of fault geometries. A logical and workable structural interpretation resulted when these two action steps were taken. To the knowledge of our interpretation team, neither of these approaches had been attempted in the area at the time of this work (early 1990s). We found two pitfalls that may be encountered by other interpreters. The first pitfall was the hazard of accepting long-standing, industry-accepted definitions of the positions of formation tops on well logs. This nonquestioning acceptance of certain log signatures as indications of targeted formation tops led to a serious misinterpretation in our study. The second pitfall was the prevailing passion by geophysicists to create seismic data volumes that have the widest possible frequency spectrum. This interpretation effort showed that the opposite strategy was better at this site and for our data conditions; i.e., it was better to filter seismic images so that they contained only the lowest octave of frequencies in the seismic spectrum.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. WC163-WC171 ◽  
Author(s):  
Musa S. D. Manzi ◽  
Mark A. S. Gibson ◽  
Kim A. A. Hein ◽  
Nick King ◽  
Raymond J. Durrheim

As expensive as 3D seismic reflection surveys are, their high cost is justified by improved imaging of certain ore horizons in some of the Witwatersrand basin gold mines. The merged historical 3D seismic reflection data acquired for Kloof and South Deep mines forms an integral part of their Ventersdorp Contact Reef mine planning and development programme. The recent advances in 3D seismic technology have motivated the reprocessing and reinterpretation of the old data sets using the latest algorithms, therefore significantly increasing the signal-to-noise ratio of the data. In particular, the prestack time migration technique has provided better stratigraphic and structural imaging in complex faulted areas, such as the Witwatersrand basin, relative to older poststack migration methods. Interpretation tools such as seismic attributes have been used to identify a number of subtle geologic structures that have direct impact on ore resource evaluation. Other improvements include more accurate mapping of the depths, dip, and strike of the key seismic horizons and auriferous reefs, yielding a better understanding of the interrelationship between fault activity and reef distribution, and the relative chronology of tectonic events. The 3D seismic data, when integrated with underground mapping and borehole data, provide better imaging and modeling of critical major fault systems and zones of reef loss. Many faults resolve as multifault segments that bound unmined blocks leading to the discovery and delineation of resources in faulted areas of the mines.


2017 ◽  
Vol 35 (4) ◽  
pp. 287
Author(s):  
Protásio Nery Andrade ◽  
Reynam Cruz Pestana ◽  
Daniel E. Revelo

ABSTRACT.  This paper proposes and describes the implementation of a new depth migration method in the frequency domain. The method, based in the reverse time migration (RTM) technique, extrapolates wavefields from the source and receivers to obtain migrated seismic images that are built directly into the frequency domain. In the proposed method, wavefields are propagated in the time domain and are then transformed into the frequency domain at each time extrapolation step through the discrete Fourier transform. Neither the forward nor backward wavefield is needed to be stored in memory or read from disk storage. To speed up the migration algorithm, the discrete Fourier transform kernel for each frequency is computed and salved before the time extrapolation procedure. At the imaging condition phase, both source and receiver wavefields are at the same frequency, so that, the construction of the image occurs by multiplying the forward source propagated wavefield with the backward propagated of the receivers wavefield for each frequency component. Subsequently, saving the source field at each step to later correlate it with the backpropagated receiver wave field, usually done in conventional RTM, becomes unnecessary. Nor is it necessary to invert a matrix for each frequency component, which is done in the migration technique that uses the Helmholtz equation solution in the frequency domain. Thus, the migration procedure in the frequency domain being proposed is more efficient from a computational point of view, and can also produce high quality migrated images as those produced by conventional RTM. The rapid expansion method (REM) is used for seismic forward modeling, which extrapolated data with good precision and free of numerical dispersion. Thus, with the transformed data at each step in the frequency domain, it is possible to construct high quality, in-depth seismic images at a lower computational cost. Moreover, this frequency domain migration with REM is an atractive strategy to design robust inverse algorithms, especially for 3D problems. To demonstrate the efficiency and applicability of the proposed method, two synthetic models were used and their results showed high quality images equivalent to those obtained by conventional RTM and thus proving the vality of the method. Keywords: wave equation migration, depth migration, imaging condition, frequency domain migration. RESUMO. Um método de migração em profundidade no domínio da frequência é proposto e implementado. O método consiste na extrapolação dos campos de ondas da fonte e dos receptores e baseia-se na técnica de migração reversa no tempo (da sigla em inglês, RTM), obtendo imagens sísmicas migradas, construídas diretamente no domínio da frequência. No método que estamos propondo, os campos de ondas são propagados no domínio do tempo e a cada passo de extrapolação são transformados para o domínio da frequência, através da transformada de Fourier discreta (do inglês, on-the-fly transform). Para acelerar o algoritmo de migração, o kernel da transformada de Fourier é calculado fora do loop do tempo. Além disso, na etapa de condição da imagem, os campos de onda, tanto da fonte como dos receptores, são calculados no mesmo instante de tempo, ou seja, a construção da imagem se dá através da multiplicação do campo de onda da fonte com o campo retropropagado dos receptores, para cada componente de frequência. Portanto, não precisamos salvar o campo da fonte a cada passo no tempo para posteriormente correlacionar com o campo de onda retropropagado dos receptores, como é usualmente feito na RTM convencional, nem é preciso inverter uma matriz para cada componente de frequência, como é realizado normalmente pela técnica de migração no domínio da frequência, utilizando a solução da equação de Helmholtz. Desta forma, o procedimento de migração no domínio da frequência que estamos propondo se torna mais eficiente do ponto de vista computacional, podendo produzir imagens migradas de alta qualidade, quando comparadas às obtidas através da RTM convencional no domínio do tempo. Para a extrapolação dos campos de ondas no tempo foi empregado o método de expansão rápida (da sigla em inglês, REM), que permite a extrapolação dos dados com boa precisão e livres de dispersão numérica. Desta forma, com os dados transformados para o domínio da frequência, a cada passo no tempo, é possível a construção de imagens sísmicas em profundidade de boa qualidade e a um menor custo computacional. Para demonstrar a eficiência e aplicabilidade do método proposto, dois modelos sintéticos foram usados e seus resultados apresentaram imagens de alta qualidade equivalentes às obtidas pela RTM convencional. Palavras-chave: equação de migração da onda, migração, condição de imagem, migração no domínio da frequência.


2020 ◽  
Vol 29 (07n08) ◽  
pp. 2040012
Author(s):  
Li Lou ◽  
Yong Li

To filter noises and preserve the details of seismic images, a denoising method based on kernel prediction convolution neural network (CNN) architecture is proposed. The method consists of two convolution layers and a residual connection, containing a source sensing encoder, a spatial feature extractor and a kernel predictor. The scalar kernel was normalized by the softmax function to obtain the denoised images. In addition, to avoid excessive blur at the expense of image details, the authors put forward the concept of asymmetric loss function, which would enable users to control the level of residual noise and make a trade-off between variance and deviation. The experimental results show the proposed method achieved good denoising effect. Compared with some other excellent methods, the proposed method increased the peak signal-to-noise ratio (PSNR) by about 1.0–3.2 dB for seismic images without discontinuity, and about 1.8–3.9 dB for seismic images with discontinuity.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. S21-S32
Author(s):  
Jincheng Xu ◽  
Jianfeng Zhang ◽  
Linong Liu ◽  
Wei Zhang ◽  
Hui Yang

We have developed a 3D prestack time migration (PSTM) approach that can directly migrate nonplanar data with near-surface-related deabsorption using three effective parameters. The proposed scheme improves the so-called topography PSTM approach by adding a near-surface effective [Formula: see text] parameter that compensates for the absorption and dispersion of waves propagating through near-surface media. The two effective velocity parameters above and below the datum can be estimated by flattening events in imaging gathers, and the additional near-surface effective [Formula: see text] parameter can be obtained using scanning technology. Hence, no knowledge with respect to near-surface media is needed in advance for implementing the proposed scheme. The proposed topography-deabsorption PSTM method can be applied to seismic data recorded on a 3D irregular surface without statics corrections. Consequently, traveltimes are obtained with improved accuracy because the raypath bends away from the vertical in the presence of high near-surface velocities, and the absorption and dispersion caused by strong intrinsic attenuation in near-surface media are correctly compensated. Moreover, we attenuated the migrated noise by smearing each time sample only along the Fresnel zone rather than along the entire migration aperture. As a result, an image with a higher resolution and superior signal-to-noise ratio is achieved. The performance of the proposed topography-deabsorption PSTM scheme has been verified using synthetic and field data sets.


Geophysics ◽  
1991 ◽  
Vol 56 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Z. Li ◽  
W. Lynn ◽  
R. Chambers ◽  
Ken Larner ◽  
Ray Abma

Prestack frequency‐wavenumber (f-k) migration is a particularly efficient method of doing both full prestack time migration and migration velocity analysis. Conventional implementations of the method, however, can encounter several drawbacks: (1) poor resolution and spatial aliasing noise caused by insufficient sampling in the offset dimension, (2) poor definition of steep events caused by insufficient sampling in the velocity dimension, and (3) inadequate handling of ray bending for steep events. All three of these problems can be mitigated with modifications to the prestack f-k algorithm. The application of linear moveout (LMO) in the offset dimension prior to migration reduces event moveout and hence increases the bandwidth of non‐spatially aliased signals. To reduce problems of interpolation for steep events, the number of constant‐velocity migrations can be economically increased by performing residual poststack migrations. Finally, migration with a dip‐dependent imaging velocity addresses the issue of ray bending and thereby improves the positioning of steep events. None of these enhancements substantially increases the computational effort of f-k migration. Prestack f-k migration possesses a limitation for which no solution is readily available. Where lateral velocity variation is modest, steep events (such as fault‐plane reflections in sediments) may not be imaged as well as by other migration approaches. This shortcoming results from the restriction that, in the prestack f-k approach, a single velocity field must serve to perform two different functions: imaging and stacking. Nevertheless, in areas of strong velocity variation and gentle to moderate dip, the detailed velocity control afforded by the prestack f-k method is an excellent source of geologic information.


Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. S73-S82 ◽  
Author(s):  
Sergius Dell ◽  
Dirk Gajewski ◽  
Claudia Vanelle

Time migration is an attractive tool to produce a subsurface image because it is faster and less sensitive to velocities errors than depth migration. However, a highly focused time image is only achievable with well-determined time-migration velocities. Therefore, a refinement of the initial time-migration velocities often is required. We introduced a new technique for prestack time migration, based on the common-migrated-reflector-element stack of common scatterpoint gathers, including an automatic update of time-migration velocities. The common scatterpoint gathers are generated using a new formulation of the double-square-root equation that is parametrized with the common-offset apex time. The common-migrated-reflector-element stack is a multiparameter stacking technique based on the Taylor expansion of traveltimes of time-migrated reflections in the paraxial vicinity of the image ray. Our 2D synthetic and field data examples demonstrated that the proposed method provides updated time-migration velocities that are more robust and have higher resolution compared with the initial time-migration velocities. The prestack time migration method also showed a clear improvement of the focusing of reflections for such geologic features as faults and salt structures.


Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 568-576 ◽  
Author(s):  
Young C. Kim ◽  
Worth B. Hurt, ◽  
Louis J. Maher ◽  
Patrick J. Starich

The transformation of surface seismic data into a subsurface image can be separated into two components—focusing and positioning. Focusing is associated with ensuring the data from different offsets are contributing constructively to the same event. Positioning involves the transformation of the focused events into a depth image consistent with a given velocity model. In prestack depth migration, both of these operations are achieved simultaneously; however, for 3-D data, the cost is significant. Prestack time migration is much more economical and focuses events well even in the presence of moderate velocity variations, but suffers from mispositioning problems. Hybrid migration is a cost‐effective depth‐imaging approach that uses prestack time migration for focusing; inverse migration for the removal of positioning errors; and poststack depth migration for proper positioning. When lateral velocity changes are moderate, the hybrid technique can generate a depth image that is consistent with a velocity field. For very complex structures that require prestack depth migration, the results of the hybrid technique can be used to create a starting velocity model, thereby reducing the number of iterations for velocity model building.


2021 ◽  
Vol 18 (2) ◽  
pp. 291-303
Author(s):  
Changshan Han ◽  
Linong Liu ◽  
Zelin Liu ◽  
Zhengwei Li

Abstract We developed a modified topography prestack time migration (PSTM) scheme that can improve the imaging resolution by applying effective Q to topography migration. The computation of the traveltime at each imaging location in the migration is based on the floating datum smoothed by rugged topography. Unlike the common quality factor Q, the effective Q only determines the frequency-dependent amplitude and the traveltime at a single imaging location, which enables us to establish a Q model in an inhomogeneous medium. Hence, we can acquire the effective Q using a scanning technology according to the width of the frequency band and signal-to-noise ratio of the imaging gathers. The proposed migration method can be integrated into the conventional topography migration workflow. Synthetic and three-dimensional (3D) field datasets indicate that the proposed deabsorption PSTM from rugged topography is effective.


Sign in / Sign up

Export Citation Format

Share Document