scholarly journals Aeromagnetic and spectral expressions of rare earth element deposits in Gallinas Mountains area, Central New Mexico, USA

2018 ◽  
Vol 6 (4) ◽  
pp. T937-T949
Author(s):  
Mo Li ◽  
Xiaobing Zhou ◽  
Christopher H. Gammons ◽  
Mohamed Khalil ◽  
Marvin Speece

The Gallinas Mountains, located at the junction of Lincoln and Torrance Counties, New Mexico, USA, are a series of alkaline volcanic rocks intruded into Permian sedimentary rocks. The Gallinas Mountains area hosts fluorite and copper as veins containing bastnäsite, whereas deposits of iron skarns and iron replacement are in the area as well. These deposits produce iron. In this study, the multispectral band-ratio method is used for surface mineral recognition, whereas 2D subsurface structure inversion modeling was applied to explore the depth extent of the magnetic ore distribution from aeromagnetic data. Bastnäsite has higher magnetic susceptibility (0.009 SI) than the host rocks and surrounding sedimentary rock. The bastnäsite and iron oxides (magnetite + hematite) can contribute to a positive aeromagnetic anomaly. Results indicate that (1) the positive magnetic anomaly observed at Gallinas Mountains area can be accounted for by a mixture of bastnäsite and iron oxides at a depth of approximately 400 m and a thickness of approximately 13–15 m. The surface of this area is dominated by the hydrothermal alteration associated with iron oxides over the trachyte intrusions as detected by Landsat 8 band-ratio imaging.

2021 ◽  
Vol 43 ◽  
pp. e36
Author(s):  
Neison Cabral Ferreira Freire ◽  
Admilson Da Penha Pacheco ◽  
Vinícius D'Lucas Bezerra Queiroz

The following article aims to present and discuss the monitoring, through Remote Sensing, of the dirt displacement caused by the collapse of the Córrego do Feijão’s dam I of mining waste, which occurred on January 25, 2019, in the rural area of Brumadinho, a city located in the state of Minas Gerais, Brazil. This event is considered one of the greatest technoindustrial disasters in Brazilian history, placing in danger one of the largest hydrographic basin in Brazil: the São Francisco river basin. The search area comprises from where the sludge mud got in contact with the Paraopeba’s right bank to its mouth into the Três Marias Dam, adding up to approximately 315 km. For this monitoring the spectral band ratio method was utilized,  using images from the sensors MSI/Sentinel-2 and OLI/Landsat-8 captured at different dates, employing standardization of means and variances to harmonize the range of the surface reflectance values in each image.


2020 ◽  
pp. 1-14
Author(s):  
Sabine Baumann ◽  
Brian Anderson ◽  
Trevor Chinn ◽  
Andrew Mackintosh ◽  
Catherine Collier ◽  
...  

Abstract The only complete inventory of New Zealand glaciers was based on aerial photography starting in 1978. While there have been partial updates using 2002 and 2009 satellite data, most glaciers are still represented by the 1978 outlines in contemporary global glacier databases. The objective of this project is to establish an updated glacier inventory for New Zealand. We have used Landsat 8 OLI satellite imagery from February and March 2016 for delineating clean glaciers using a semi-automatic band ratio method and debris-covered glaciers using a maximum likelihood classification. The outlines have been checked against Sentinel-2 MSI data, which have a higher resolution. Manual post processing was necessary due to misclassifications (e.g. lakes, clouds), mapping in shadowed areas, and combining the clean and debris-covered parts into single glaciers. New Zealand glaciers cover an area of 794 ± 34 km2 in 2016 with a debris-covered area of 10%. Of the 2918 glaciers, seven glaciers are >10 km2 while 71% is <0.1 km2. The debris cover on those largest glaciers is >40%. Only 15 glaciers are located on the North Island. For a selection of glaciers, we were able to calculate the area reduction between the 1978 and 2016 inventories.


2021 ◽  
Author(s):  
S Baumann ◽  
Brian Anderson ◽  
T Chinn ◽  
A MacKintosh ◽  
C Collier ◽  
...  

Copyright © The Author(s), 2020. Published by Cambridge University Press. The only complete inventory of New Zealand glaciers was based on aerial photography starting in 1978. While there have been partial updates using 2002 and 2009 satellite data, most glaciers are still represented by the 1978 outlines in contemporary global glacier databases. The objective of this project is to establish an updated glacier inventory for New Zealand. We have used Landsat 8 OLI satellite imagery from February and March 2016 for delineating clean glaciers using a semi-Automatic band ratio method and debris-covered glaciers using a maximum likelihood classification. The outlines have been checked against Sentinel-2 MSI data, which have a higher resolution. Manual post processing was necessary due to misclassifications (e.g. lakes, clouds), mapping in shadowed areas, and combining the clean and debris-covered parts into single glaciers. New Zealand glaciers cover an area of 794 ± 34 km2 in 2016 with a debris-covered area of 10%. Of the 2918 glaciers, seven glaciers are >10 km2 while 71% is <0.1 km2. The debris cover on those largest glaciers is >40%. Only 15 glaciers are located on the North Island. For a selection of glaciers, we were able to calculate the area reduction between the 1978 and 2016 inventories.


2021 ◽  
Author(s):  
S Baumann ◽  
Brian Anderson ◽  
T Chinn ◽  
A MacKintosh ◽  
C Collier ◽  
...  

Copyright © The Author(s), 2020. Published by Cambridge University Press. The only complete inventory of New Zealand glaciers was based on aerial photography starting in 1978. While there have been partial updates using 2002 and 2009 satellite data, most glaciers are still represented by the 1978 outlines in contemporary global glacier databases. The objective of this project is to establish an updated glacier inventory for New Zealand. We have used Landsat 8 OLI satellite imagery from February and March 2016 for delineating clean glaciers using a semi-Automatic band ratio method and debris-covered glaciers using a maximum likelihood classification. The outlines have been checked against Sentinel-2 MSI data, which have a higher resolution. Manual post processing was necessary due to misclassifications (e.g. lakes, clouds), mapping in shadowed areas, and combining the clean and debris-covered parts into single glaciers. New Zealand glaciers cover an area of 794 ± 34 km2 in 2016 with a debris-covered area of 10%. Of the 2918 glaciers, seven glaciers are >10 km2 while 71% is <0.1 km2. The debris cover on those largest glaciers is >40%. Only 15 glaciers are located on the North Island. For a selection of glaciers, we were able to calculate the area reduction between the 1978 and 2016 inventories.


2021 ◽  
pp. 1-26
Author(s):  
Taylor A. Ducharme ◽  
Christopher R.M. McFarlane ◽  
Deanne van Rooyen ◽  
David Corrigan

Abstract The Flowers River Igneous Suite of north-central Labrador comprises several discrete peralkaline granite ring intrusions and their coeval volcanic succession. The Flowers River Granite was emplaced into Mesoproterozoic-age anorthosite–mangerite–charnockite–granite (AMCG) -affinity rocks at the southernmost extent of the Nain Plutonic Suite coastal lineament batholith. New U–Pb zircon geochronology is presented to clarify the timing and relationships among the igneous associations exposed in the region. Fayalite-bearing AMCG granitoids in the region record ages of 1290 ± 3 Ma, whereas the Flowers River Granite yields an age of 1281 ± 3 Ma. Volcanism occurred in three discrete events, two of which coincided with emplacement of the AMCG and Flowers River suites, respectively. Shared geochemical affinities suggest that each generation of volcanic rocks was derived from its coeval intrusive suite. The third volcanic event occurred at 1271 ± 3 Ma, and its products bear a broad geochemical resemblance to the second phase of volcanism. The surrounding AMCG-affinity ferrodiorites and fayalite-bearing granitoids display moderately enriched major- and trace-element signatures relative to equivalent lithologies found elsewhere in the Nain Plutonic Suite. Trace-element compositions also support a relationship between the Flowers River Granite and its AMCG-affinity host rocks, most likely via delayed partial melting of residual parental material in the lower crust. Enrichment manifested only in the southernmost part of the Nain Plutonic Suite as a result of its relative proximity to multiple Palaeoproterozoic tectonic boundaries. Repeated exposure to subduction-derived metasomatic fluids created a persistent region of enrichment in the underlying lithospheric mantle that was tapped during later melt generation, producing multiple successive moderately to strongly enriched magmatic episodes.


2015 ◽  
Vol 52 (12) ◽  
pp. 1093-1108 ◽  
Author(s):  
Bruno Lafrance

The Larder Lake – Cadillac deformation zone (LLCDZ) is one of two major, auriferous, deformation zones in the southern Abitibi subprovince of the Archean Superior Province. It hosts the Cheminis and the giant Kerr Addison – Chesterville deposits within a strongly deformed band of Fe-rich tholeiitic basalt and komatiite of the Larder Lake Group (ca. 2705 Ma). The latter is bounded on both sides by younger, less deformed, Timiskaming turbidites (2674–2670 Ma). The earliest deformation features are F1 folds affecting the Timiskaming rocks, which formed either during D1 extensional faulting or during early D2 north–south shortening related to the opening and closure, respectively, of the Timiskaming basin. Continued shortening during D2 imbricated the older volcanic rocks and turbidites and produced regional F2 folds with an axial planar S2 cleavage. D2 deformation was partitioned into the weaker band of volcanic rocks, producing the strong S2 foliation, L2 stretching lineation, and south-side-up shear sense indicators, which characterize the LLCDZ. Gold is present in quartz–carbonate veins in deformed fuchsitic komatiites (carbonate ore) and turbiditic sandstone (sandstone-hosted ore), and in association with disseminated pyrite in altered Fe-rich tholeiitic basalts (flow ore). All host rocks underwent strong mass gains in CO2, S, K2O, Ba, As, and W, during sericitization, carbonatization, and sulphidation of the host rocks, suggesting that they interacted with the same hydrothermal fluids. Textural relationships between alteration minerals and S2 cleavage indicate that mineralization is syn-cleavage. Thus, gold was deposited as hydrothermal fluids migrated upward along the LLCDZ during contractional, D2 south-side-up shearing. The gold zones were subsequently modified during D3 reactivation of the LLCDZ as a dextral transcurrent fault zone.


2019 ◽  
Vol 55 (1) ◽  
pp. 202
Author(s):  
Foteini Aravani ◽  
Lambrini Papadopoulou ◽  
Vasileios Melfos ◽  
Triantafillos Soldatos ◽  
Triantafillia Zorba ◽  
...  

The volcanic rocks of Kornofolia area, Evros, host a number of epithermal-type veins. The host rocks are Oligocene calc-alkaline andesites to rhyo-dacites. The andesites form hydrothermal breccias and show hydrothermal alteration. The veins comprise mainly silica polymorphs such as quartz, chalcedony and three types of opal (milky white, transparent and green). Amethyst also forms in veins at the same area. Apart from the silica polymorphs, the veins are accompanied by calcite and zeolites. The main aim of this study is the characterization of the silica polymorphs. Using FT-IR analyses, variations in the crystal structure of the three opals were recognized. The green opal is found to be more amorphous than the other two types. Fluid-inclusion measurements were performed in calcite and were compared with amethyst from previous studies. The Th is between 121-175 °C and the Te between -22.9 and -22.4 °C. The salinities range from 0.9 to 4.5 wt % NaCl equiv.


2017 ◽  
Vol 3 (2) ◽  
pp. 204
Author(s):  
I Nengah Jaya Nugraha ◽  
I Wayan Gede Astawa Karang ◽  
I Gusti Bagus Sila Dharma

Erosion and abrasion are the events that led to the beach shoreline position changes. The impact of climate change is the rise in sea level also causes changes in the coastline. South East coast of Bali, especially along the coast Gianyar and Klungkung changing coastline. This study aims to identify and calculate the rate of shoreline change in Gianyar and Klungkung from 1995 to 2015. The study was a preliminary information shoreline change and do not analyze the causes such as tides, currents, waves, and wind. The method used remote sensing analysis with the extraction of the coastline from the Landsat 5 satellite images in 1995, Landsat 7 in 2005, and Landsat 8 2015. Landsat imagery analyzed by a combination of methods approach the threshold and band ratio of wave infrared and green. Image processing using software Quantum GIS 2.8 and System for Automated Geoscientific Analyses (SAGA) GIS 2.2, extention Digintal Shoreline Analysis System (DSAS) to make calculations transect coastline. The results of the analysis of overlaying identify coastline in Gianyar and Klungkung change at a rate that varies every village. The rate of change of coastline in Gianyar due to accretion between 0.5096 - 8.6074 m / yr, while due to erosion between -3.7343 to -1.3201 m / yr. The rate of change in Klungkung regency coastline due to accretion between 0.6337 - 2.6875 m / yr, while due to erosion between -8.8795 to -0.8833 m / yr.


Sign in / Sign up

Export Citation Format

Share Document