Investigation of fluid effects on seismic responses through a physical modeling experiment

2020 ◽  
pp. 1-38
Author(s):  
Chao Xu ◽  
Pinbo Ding ◽  
Bangrang Di ◽  
Jianxin Wei

We investigated fluid effects on seismic responses using seismic data from a physical modeling experiment. Eight cubic samples with cavities quantitatively filled with air, oil, and water and sixteen non-fluid samples were set within a physical model. Both pre-stack and post-stack seismic responses of the samples were analyzed to quantitatively investigate the fluid effect on the seismic response. It was indicated that fluids could cause detectable changes in both pre-stack and post-stack seismic responses for tight rocks. At first, fluids filled within samples caused changes in pre-stack seismic responses. Visible differences could be detected between angle gathers of the samples filled with air, oil, and water. For the base reflections, the amplitudes at large angles of the air-filled and oil-filed samples are obviously stronger than those of the water-filled sample. In addition, the presence of fluids within samples led to significant changes in post-stack seismic reflections. For samples with similar P-wave impedances to the background, we found strong seismic reflections for the fluid samples and weak or even no reflections for the non-fluid samples. There was notable interference between the top and base reflections for the fluid samples while there was none for the non-fluid samples. Seismic velocities were estimated using the two-way travel times between the top and base reflections. The estimated seismic velocity gently declined with increasing water saturation until 90%. When the water saturation was more than 90%, the seismic velocity showed a steep increase.

Geophysics ◽  
1941 ◽  
Vol 6 (4) ◽  
pp. 327-355
Author(s):  
E. J. Stulken

For the first time, seismic velocity measurements from well surveys have been made intensively enough to justify an analysis of the velocity field in an entire area instead of just along lines between wells. Maps are drawn showing velocity changes in the southeastern San Joaquin Valley of California. A portion of the valley floor in the neighborhood of Bakersfield, about twenty‐five miles wide and thirty‐five miles long, was chosen for study because of the number of wells in the area whose velocities were known. Differences in average velocity of 1700 feet per second for a constant depth are observed, and horizontal velocity gradients averaging over 100 feet per second per mile are computed. Correction schemes for the adjustment of seismic data are suggested, and correction maps shown. An attempt is made to establish a connection between stratigraphy and seismic velocity. Comparative study of the logs of wells and the velocities observed in them yields certain qualitative conclusions, but attempts to express the relation in a quantitative way fail.


Geophysics ◽  
2001 ◽  
Vol 66 (6) ◽  
pp. 1925-1936 ◽  
Author(s):  
Moritz M. Fliedner ◽  
Robert S. White

We use the wide‐angle wavefield to constrain estimates of the seismic velocity and thickness of basalt flows overlying sediments. Wide angle means the seismic wavefield recorded at offsets beyond the emergence of the direct wave. This wide‐angle wavefield contains arrivals that are returned from within and below the basalt flows, including the diving wave through the basalts as the first arrival and P‐wave reflections from the base of the basalts and from subbasalt structures. The velocity structure of basalt flows can be determined to first order from traveltime information by ray tracing the basalt turning rays and the wide‐angle base‐basalt reflection. This can be refined by using the amplitude variation with offset (AVO) of the basalt diving wave. Synthetic seismogram models with varying flow thicknesses and velocity gradients demonstrate the sensitivity to the velocity structure of the basalt diving wave and of reflections from the base of the basalt layer and below. The diving‐wave amplitudes of the models containing velocity gradients show a local amplitude minimum followed by a maximum at a greater range if the basalt thickness exceeds one wavelength and beyond that an exponential amplitude decay. The offset at which the maximum occurs can be used to determine the basalt thickness. The velocity gradient within the basalt can be determined from the slope of the exponential amplitude decay. The amplitudes of subbasalt reflections can be used to determine seismic velocities of the overburden and the impedance contrast at the reflector. Combining wide‐angle traveltimes and amplitudes of the basalt diving wave and subbasalt reflections enables us to obtain a more detailed velocity profile than is possible with the NMO velocities of small‐offset reflections. This paper concentrates on the subbasalt problem, but the results are more generally applicable to situations where high‐velocity bodies overlie a low‐velocity target, such as subsalt structures.


2021 ◽  
Author(s):  
◽  
Lucy Caroline Hall

<p>Seismic velocity structures, interpreted as being associated with the Hikurangi subduction system beneath the lower North Island of New Zealand, are imaged using stacked P wave receiver functions computed using teleseismic earthquakes. Receiver functions are a seismological technique that exploits the phenomenon of wave conversion. The upcoming P wave interacts with seismic velocity impedance contrasts below the receiving station to produce polarized P to SV converted phases. The time delay between the first arriving P wave and the SV converted phase is interpreted to infer the depth of interfaces and the velocity structure directly below the receiver, allowing estimates to be made of the physical properties of the interface. Passive seismic data were recorded at eighteen seismic stations deployed across a ~90km transect stretching across the breadth of lower North Island of New Zealand, from Kapiti Island, 5km off the west coast, to the eastern coast. The transect is oriented normal to the strike of the subducting Pacific Plate, as it dives beneath the overriding Australian Plate. Data were recorded at 10 broadband and 2 short period sensors, deployed as part of the Seismic Array Hikurangi Project (SAHKE 1 deployment), 3 Geonet (New Zealand Geonet Project) permanent short period stations, and 3 temporary stations from part of the 1991-1992 POMS project. Seismic data were recorded between November 2009 and March 2010 on the short period sensors and up to 18 months on the broadband sensor. Data recorded between November 2009 and November 2011 were utilised from the Geonet stations. P wave receiver functions are computed using the multi-taper correlation method using 389 > 6.0 Mw teleseismic earthquakes recorded at the individual seismic stations. A total of 1082 individual receiver functions from all the stations are stacked for both the individual stations and as a ‘super-stack’ across the complete transect, using the common conversion point (CCP) method. The CCP stack shows a distinct, thick low velocity layer (LVL), dipping to the west, from ~18km depth in the east to ~30km depth in the west. This is above a higher velocity layer, also dipping west, at depths of between ~22km and ~ 37km. The LVL is interpreted as being subducted sediments overlying the higher velocity plate interface. Structures towards the west indicate the presence of possibly imbricated features associated with the overriding plate. Deeper structures, down to a depth of 140km are evident, but have less clarity than the shallower features. Some of the deeper layers appear to be dipping towards the west, some to the east. The results of the CCP stack agree well with results from active source methods.</p>


2021 ◽  
Author(s):  
Jonathan Yelton

Understanding the migration behavior of carbon dioxide (CO2) during long-term geological storage is crucial to the success of carbon capture and sequestration technology. I explore p-wave and s-wave seismic properties across the Little Grand Wash fault in east-central Utah, a natural CO2 seep and analogue for a long-failed sequestration site. Travertines dated to at least 113,000 k.y. and geochemical surveys confirm both modern and ancient CO2 leakage along the fault. Outgassing is currently focused in damage zones where the total fluid pressure may reduce the minimum horizontal effective stress. Regional stress changes may be responsible for decadal- to millennial-scale changes in CO2 pathways. I identify subsurface geologic structure in the upper few hundred meters and relate surface CO2 outgassing zones to seismic reflection and first arrival tomography data. I tie my hammer seismic results to borehole logs, geology from outcrops, and geochemical data. I generate velocity tomograms that cross the fault zone and construct rock physics models. I identify high porosity and/or high fracture density zones from slow seismic velocity zones. These zones match mapped fault locations, are fully saturated, and are conduits for upward fluid/gas migration. Anomalously high seismic velocities at the fault are consistent with ancient CO2 flow pathways. Low CO2 flux regions show seismic velocities consistent with shallow unsaturated host rock. Studying the behavior of CO2 in this system can give insight of potential risks in future sequestration projects.


Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. T37-T45 ◽  
Author(s):  
Mu Luo ◽  
Mamoru Takanashi ◽  
Kazuo Nakayama ◽  
Teruya Ezaka

Reservoir properties can be inferred from the amount of anisotropy estimated from seismic data. Unfortunately, irregularities in the formations above the reservoir unit can mask or overprint the true seismic anisotropy of the reservoir unit. This overburden effect subjects the measured reservoir seismic anisotropy to a high degree of uncertainty. We investigate this overburden effect on P-waves with a three-layer ultrasonic laboratory-scale model whose middle layer contains localized, gas-filled vertical fractures. We analyze the reflection amplitudes and traveltimes of a P-wave reflection event from below the overburden to understand the overburden effect on anisotropy analysis and imaging. Our study shows that steps must be taken to reduce the P-wave overburden effect when significant irregularities occur in the formations above the reservoir unit.


Geophysics ◽  
1981 ◽  
Vol 46 (10) ◽  
pp. 1415-1422 ◽  
Author(s):  
A. W. Ibrahim ◽  
George V. Keller

Variation of P‐wave velocities and electrical resistivities of several suites of water‐saturated recent volcanics was investigated. Both P‐velocities and resistivities exhibited strong dependence on porosity. Resistivity was also dependent upon degree of water saturation and temperature. P‐wave velocities, while showing a strong dependence on porosity, appear to be independent of water saturation and temperature. Volcanics, in general, exhibit higher resistivities compared to other igneous rocks and sediments. Electric resistivity of fine‐grained basalts is anomalously low, probably due to higher content of disseminated iron. Pyroclastics and volcanic breccia, on the other hand, exhibit higher resistivities in relation to fine‐grained basalts.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. V77-V87 ◽  
Author(s):  
Rishi Bansal ◽  
Mike Matheney

Converted-wave (PS) data, when converted to PP time, develop time- and location-varying compression of the seismic wavelet due to a variable subsurface [Formula: see text] [Formula: see text]. The time-dependent compression distorts the wavelet in a seismic trace. The lack of a consistent seismic wavelet in a domain-converted PS volume can eventually lead to an erroneous joint PP/PS inversion result. Depth-converted seismic data also have wavelet distortion due to velocity-dependent wavelet stretch. A high value of seismic velocity produces more stretch in a seismic wavelet than a low value. Variable wavelet stretch renders the depth data unsuitable for attribute analysis. A filtering scheme is proposed that corrects for distortion in seismic wavelets due to domain conversions (PS to PP time and time-to-depth) of seismic data in an amplitude-preserving manner. The method uses a Fourier scaling theorem to predict the seismic wavelet in the converted domain and calculates a shaping filter for each time/depth sample that corrects for the distortion in the wavelet. The filter is applied to the domain-converted data using the method of nonstationary filtering. We provide analytical expressions for the squeeze factor [Formula: see text] that is used to predict the wavelet in the converted domain. The squeeze factor [Formula: see text] for PS to PP time conversion is a function of the subsurface [Formula: see text] whereas for PP time-to-depth conversion [Formula: see text] is dependent on subsurface P-wave velocity. After filtering, the squeezed wavelets in domain-converted PS data appear to have resulted from a constant subsurface [Formula: see text], which we denote as [Formula: see text]. Similarly, the filtered depth-converted data appear to have resulted from a constant subsurface P-wave velocity [Formula: see text].


Geophysics ◽  
2008 ◽  
Vol 73 (1) ◽  
pp. E7-E14 ◽  
Author(s):  
Radim Ciz ◽  
Anthony F. Siggins ◽  
Boris Gurevich ◽  
Jack Dvorkin

Understanding the effective stress coefficient for seismic velocity is important for geophysical applications such as overpressure prediction from seismic data as well as for hydrocarbon production and monitoring using time-lapse seismic measurements. This quantity is still not completely understood. Laboratory measurements show that the seismic velocities as a function of effective stress yield effective stress coefficients less than one and usually vary between 0.5 and 1. At the same time, theoretical analysis shows that for an idealized monomineral rock, the effective stress coefficient for elastic moduli (and therefore also for seismic velocities) will always equal one. We explore whether this deviation of the effective stress coefficient from unity can be caused by the spatial microheterogeneity of the rock. The results show that only a small amount (less than 1%) of a very soft component is sufficient to cause this effect. Such soft material may be present in grain contact areas of many rocks and may explain the variation observed experimentally.


2021 ◽  
Author(s):  
◽  
Lucy Caroline Hall

<p>Seismic velocity structures, interpreted as being associated with the Hikurangi subduction system beneath the lower North Island of New Zealand, are imaged using stacked P wave receiver functions computed using teleseismic earthquakes. Receiver functions are a seismological technique that exploits the phenomenon of wave conversion. The upcoming P wave interacts with seismic velocity impedance contrasts below the receiving station to produce polarized P to SV converted phases. The time delay between the first arriving P wave and the SV converted phase is interpreted to infer the depth of interfaces and the velocity structure directly below the receiver, allowing estimates to be made of the physical properties of the interface. Passive seismic data were recorded at eighteen seismic stations deployed across a ~90km transect stretching across the breadth of lower North Island of New Zealand, from Kapiti Island, 5km off the west coast, to the eastern coast. The transect is oriented normal to the strike of the subducting Pacific Plate, as it dives beneath the overriding Australian Plate. Data were recorded at 10 broadband and 2 short period sensors, deployed as part of the Seismic Array Hikurangi Project (SAHKE 1 deployment), 3 Geonet (New Zealand Geonet Project) permanent short period stations, and 3 temporary stations from part of the 1991-1992 POMS project. Seismic data were recorded between November 2009 and March 2010 on the short period sensors and up to 18 months on the broadband sensor. Data recorded between November 2009 and November 2011 were utilised from the Geonet stations. P wave receiver functions are computed using the multi-taper correlation method using 389 > 6.0 Mw teleseismic earthquakes recorded at the individual seismic stations. A total of 1082 individual receiver functions from all the stations are stacked for both the individual stations and as a ‘super-stack’ across the complete transect, using the common conversion point (CCP) method. The CCP stack shows a distinct, thick low velocity layer (LVL), dipping to the west, from ~18km depth in the east to ~30km depth in the west. This is above a higher velocity layer, also dipping west, at depths of between ~22km and ~ 37km. The LVL is interpreted as being subducted sediments overlying the higher velocity plate interface. Structures towards the west indicate the presence of possibly imbricated features associated with the overriding plate. Deeper structures, down to a depth of 140km are evident, but have less clarity than the shallower features. Some of the deeper layers appear to be dipping towards the west, some to the east. The results of the CCP stack agree well with results from active source methods.</p>


1998 ◽  
Vol 41 (4) ◽  
Author(s):  
G. Iannaccone ◽  
L. Improta ◽  
P. Capuano ◽  
A. Zollo ◽  
G. Biella ◽  
...  

This paper describes the results of a seismic refraction profile conducted in October 1992 in the Sannio region, Southern Italy, to obtain a detailed P-wave velocity model of the upper crust. The profile, 75 km long, extended parallel to the Apenninic chain in a region frequently damaged in historical time by strong earthquakes. Six shots were fired at five sites and recorded by a number of seismic stations ranging from 41 to 71 with a spacing of 1-2 km along the recording line. We used a two-dimensional raytracing technique to model travel times and amplitudes of first and second arrivals. The obtained P-wave velocity model has a shallow structure with strong lateral variations in the southern portion of the profile. Near surface sediments of the Tertiary age are characterized by seismic velocities in the 3.0-4.1 km/s range. In the northern part of the profile these deposits overlie a layer with a velocity of 4.8 km/s that has been interpreted as a Mesozoic sedimentary succession. A high velocity body, corresponding to the limestones of the Western Carbonate Platform with a velocity of 6 km/s, characterizes the southernmost part of the profile at shallow depths. At a depth of about 4 km the model becomes laterally homogeneous showing a continuous layer with a thickness in the 3-4 km range and a velocity of 6 km/s corresponding to the Meso-Cenozoic limestone succession of the Apulia Carbonate Platform. This platform appears to be layered, as indicated by an increase in seismic velocity from 6 to 6.7 km/s at depths in the 6-8 km range, that has been interpreted as a lithological transition from limestones to Triassic dolomites and anhydrites of the Burano formation. A lower P-wave velocity of about 5.0-5.5 km/s is hypothesized at the bottom of the Apulia Platform at depths ranging from 10 km down to 12.5 km; these low velocities could be related to Permo-Triassic siliciclastic deposits of the Verrucano sequence drilled at the bottom of the Apulia Platform in the Apulia Foreland.


Sign in / Sign up

Export Citation Format

Share Document