kNN-based Gas-bearing Prediction Using Local Waveform Similarity Gas-indication Attribute - An Application to a Tight Sandstone Reservoir
Gas-bearing prediction of tight sandstone reservoirs is significant but challenging due to the relationship between the gas-bearing property and its seismic response being nonlinear and complex. Although machine learning (ML) methods provide potential for solving the issue, the major challenge of ML applications to gas-bearing prediction is that of generating accurate and interpretable intelligent models with limited training sets. The k Nearest neighbor ( kNN) method is a supervised ML method classifying an unlabeled sample according to its k neighboring labeled samples. We have introduced a kNN-based gas-bearing prediction method. The method can automatically extract a gas-sensitive attribute called the gas-indication local waveform similarity attribute (GLWSA) combining prestack seismic gathers with interpreted gas-bearing curves. GLWSA uses the local waveform similarity among the predicting samples and the gas-bearing training samples to indicate the existence of an exploitable gas reservoir. GLWSA has simple principles and an explicit geophysical meaning. We use a numerical model and field data to test the effectiveness of our method. The result demonstrates that GLWSA is good at characterizing the reservoir morphology and location qualitatively. When the method applies to the field data, we evaluate the performance with a blind well. The prediction result is consistent with the geologic law of the work area and indicates more details compared to the root-mean-square attribute.