Introduction to this special section: Remote sensing

2021 ◽  
Vol 40 (1) ◽  
pp. 25-25
Author(s):  
Yongyi Li ◽  
Dominique Dubucq ◽  
Khalid Soofi

Remote sensing detects and monitors the physical and spatial characteristics of the earth's ocean, surface, and atmosphere by measuring the reflected or scattered electromagnetic, optical, or acoustic signals using passive or active sensors. It has long been used in hydrocarbon exploration and related environment evaluation such as mapping surface geology and topography, providing information for evaluation of well sites and oil and gas infrastructure, detecting hydrocarbon seepages and spills, and monitoring ground deformation and characterizing reservoir conditions during production.

2019 ◽  
Vol 38 (7) ◽  
pp. 554-555
Author(s):  
Yongyi Li ◽  
Roice Nelson ◽  
William Jeffery ◽  
Douglas Foster ◽  
Dominique Dubucq ◽  
...  

Remote sensing detects and monitors the physical and spatial characteristics of the earth's oceans, surface, and atmosphere by measuring the reflected or scattered downwelling or emitted upwelling electromagnetic radiation or acoustic signal using passive or active sensors at a distance. It plays an important role in today's energy and environmental sustainability efforts. Remote sensing from spaceborne, airborne, terrestrial, and marine platforms has long been used in hydrocarbon exploration to map surface geology, topography, and hydrocarbon seepages, as well as to evaluate environments that relate to petroleum industry activities. Since the mid-2000s, remote sensing technologies have undergone substantial advances in data acquisition, processing, and interpretation. In the last decade, rapid advances in satellite systems, unmanned autonomous vehicles (UAVs), sensors, and scale of surveys have further expanded applications.


2020 ◽  
Vol 12 (23) ◽  
pp. 3934
Author(s):  
Emil Bayramov ◽  
Manfred Buchroithner ◽  
Martin Kada

This research focused on the quantitative assessment of the surface deformation velocities and rates and their natural and man-made controlling factors as the potential risks along the seismically active 70 km section of buried oil and gas pipeline in Azerbaijan using Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) and Small Baseline Subset (SBAS) remote sensing analysis. Both techniques showed that the continuous subsidence was prevailing in the kilometer range of 13–70 of pipelines crossing two seismic faults. The ground uplift deformations were observed in the pipeline kilometer range of 0–13. Although both PS-InSAR and SBAS measurements were highly consistent in deformation patterns and trends along pipelines, they showed differences in the spatial distribution of ground deformation classes and noisiness of produced results. High dispersion of PS-InSAR measurements caused low regression coefficients with SBAS for the entire pipeline kilometer range of 0–70. SBAS showed better performance than PS-InSAR along buried petroleum and gas pipelines in the following aspects: the complete coverage of the measured points, significantly lower dispersion of the results, continuous and realistic measurements and higher accuracy of ground deformation rates against the GPS historical measurements. As a primary factor of ground deformations, the influence of tectonic movements was observed in the wide scale analysis along 70 km long and 10 km wide section of petroleum and gas pipelines; however, the largest subsidence rates were observed in the areas of agricultural activities which accelerate the deformation rates caused by the tectonic processes. The diverse spatial distribution and variation of ground movement processes along pipelines demonstrated that general geological and geotechnical understanding of the study area is not sufficient to find and mitigate all the critical sites of subsidence and uplifts for the pipeline operators. This means that both techniques outlined in this paper provide a significant improvement for ground deformation monitoring or can significantly contribute to the assessment of geohazards and preventative countermeasures along petroleum and gas pipelines.


2014 ◽  
Vol 596 ◽  
pp. 457-462 ◽  
Author(s):  
Zhuo Li He ◽  
Xiao Lian Deng ◽  
Si Min Ai

Long-term hydrocarbon micro-seepages develop diverse arrays of chemical and mineralogical changes in rocks and soils. We called this change mineral alteration. Mapping this mineral alteration is thus a potential tool for hydrocarbon exploration. The surface changes caused by hydrocarbon seepage can potentially be detected by remote sensing techniques. In this paper, we discussed some methods which can heighten the altered mineral on the map. The feature-oriented principal component selection (FPCS) and band ratio method collaborated together in extracting the abnormal area. SASI airborne hyperspectral data of Xifeng oilfield which located in southern Ordos Basin were used in this experiment . The experimental results show that the methods adopted in this paper have a good advantage of detecting surface anomalies and alternations associated with oil and gas information.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manzar Fawad ◽  
Nazmul Haque Mondol

AbstractGeological CO2 storage can be employed to reduce greenhouse gas emissions to the atmosphere. Depleted oil and gas reservoirs, deep saline aquifers, and coal beds are considered to be viable subsurface CO2 storage options. Remote monitoring is essential for observing CO2 plume migration and potential leak detection during and after injection. Leak detection is probably the main risk, though overall monitoring for the plume boundaries and verification of stored volumes are also necessary. There are many effective remote CO2 monitoring techniques with various benefits and limitations. We suggest a new approach using a combination of repeated seismic and electromagnetic surveys to delineate CO2 plume and estimate the gas saturation in a saline reservoir during the lifetime of a storage site. This study deals with the CO2 plume delineation and saturation estimation using a combination of seismic and electromagnetic or controlled-source electromagnetic (EM/CSEM) synthetic data. We assumed two scenarios over a period of 40 years; Case 1 was modeled assuming both seismic and EM repeated surveys were acquired, whereas, in Case 2, repeated EM surveys were taken with only before injection (baseline) 3D seismic data available. Our results show that monitoring the CO2 plume in terms of extent and saturation is possible both by (i) using a repeated seismic and electromagnetic, and (ii) using a baseline seismic in combination with repeated electromagnetic data. Due to the nature of the seismic and EM techniques, spatial coverage from the reservoir's base to the surface makes it possible to detect the CO2 plume’s lateral and vertical migration. However, the CSEM low resolution and depth uncertainties are some limitations that need consideration. These results also have implications for monitoring oil production—especially with water flooding, hydrocarbon exploration, and freshwater aquifer identification.


2021 ◽  
Author(s):  
Federico Di Traglia ◽  
Claudio De Luca ◽  
Alessandro Fornaciai ◽  
Mariarosaria Manzo ◽  
Teresa Nolesini ◽  
...  

<p>Steep-slope volcanoes are geomorphological systems receptive to both exogenous and endogenous phenomena. Volcanic activity produces debris and lava accumulation, whereas magmatic/tectonic and gravitational processes can have a destructive effect, triggering mass-wasting and erosion.</p><p>Optical and radar sensors have often been used to identify areas impacted by eruptive and post-eruptive phenomena, quantify of topographic changes, and/or map ground deformation related to magmatic-tectonic-gravitational processes.</p><p>In this work, the slope processes on high-gradient volcano flanks in response to shift in volcanic activity have been identified by means of remote sensing techniques. The Sciara del Fuoco unstable flank of Stromboli volcano (Italy) was studied, having a very large set (2010-2020) of different remote sensing data available.</p><p>Data includes LiDAR and tri-stereo PLEIADES-1 DEMs, high-spatial-resolution (HSR) optical imagery (QUICKBIRD and PLEIADES-1), and space-borne and ground-based Synthetic Aperture Radar (SAR) data. Multi-temporal DEMs and HSR optical imagery permits to map areas affected by major lithological and morphological changes, and the volumes of deposited/eroded material. The results lead to the identification of topographical variations and geomorphological processes that occurred in response to the variation in eruptive intensity. The joint exploitation of space-borne and ground-based Differential and Multi Temporal SAR Interferometry (InSAR and MT-InSAR) measurements revealed deformation phenomena affecting the volcano edifice, and in particular the Sciara del Fuoco flank.</p><p>The presented results demonstrate the effectiveness of the joint exploitation of multi-temporal DEMs, HSR optical imagery, and InSAR measurements obtained through satellite and terrestrial SAR systems, highlighting their strong complementarity to map and interpret the slope phenomena in volcanic areas.</p><p>This work was financially supported by the “Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile” (Presidency of the Council of Ministers – Department of Civil Protection); this publication, however, does not reflect the position and official policies of the Department".</p>


2021 ◽  
Author(s):  
Florence Letitia Bebb ◽  
Kate Clare Serena Evans ◽  
Jagannath Mukherjee ◽  
Bilal Saeed ◽  
Geovani Christopher

Abstract There are several significant differences between the behavior of injected CO2 and reservoired hydrocarbons in the subsurface. These fundamental differences greatly influence the modeling of CO2 plumes. Carbon capture, utilization, and storage (CCUS) is growing in importance in the exploration and production (E&P) regulatory environment with the Oil and Gas Climate Initiative (OGCI) making CCUS a priority. Companies need to prospect for storage sites and evaluate both the short-term risks and long-term fate of stored carbon dioxide (CO2). Understanding the physics governing fluid flow is important to both CO2 storage and hydrocarbon exploration and production. In the last decade, there has been much research into the movement and migration of CO2 in the subsurface. A better understanding of the flow dynamics of CO2 plumes in the subsurface has highlighted a number of significant differences in modeling CO2 storage sites compared with hydrocarbon reservoir simulations. These differences can greatly influence reliability when modeling CO2 storage sites.


Sign in / Sign up

Export Citation Format

Share Document