President's Page: Leading the way to a carbon-neutral world

2021 ◽  
Vol 40 (10) ◽  
pp. 712-713
Author(s):  
Scott Singleton

Carbon capture and storage (CCS) and carbon capture, utilization, and storage (CCUS) are expanding at lightning speed as the world increasingly embraces the need for a carbon-neutral future. As it is described on the U.S. Department of Energy (DOE) website, “CCUS is a process that captures carbon dioxide emissions from sources like coal-fired power plants and either reuses or stores it so it will not enter the atmosphere. Carbon dioxide storage in geologic formations includes oil and gas reservoirs, unmineable coal seams and deep saline reservoirs — structures that have stored crude oil, natural gas, brine and carbon dioxide over millions of years” ( https://www.energy.gov/carbon-capture-utilization-storage ). The International Energy Agency (IEA) states that “CCUS is the only group of technologies that contributes both to reducing emissions in key sectors directly and to removing CO2 to balance emissions that are challenging to avoid – a critical part of “net-zero” goals. After years of slow progress, new investment incentives and strengthened climate goals are building new momentum behind CCUS” ( https://www.iea.org/reports/ccus-in-clean-energy-transitions ).


Author(s):  
G. Hachem ◽  
J. Salazar ◽  
U. Dixekar

Carbon capture and storage (CCS) constitutes an extremely important technology that is constantly being improved to minimize the amounts of carbon dioxide (CO2) entering the atmosphere. According to the Global CCS Institute, there are more than 320 worldwide CCS projects at different phases of progress. However, current CCS processes are accompanied with a large energy and efficiency penalty. This paper models and simulates a post-combustion carbon capture system, that uses absorption as a method of separation, in Aspen Plus V7.2. Moreover, the CAPE-OPEN Simulated Annealing (SA) Capability is implemented to minimize the energy consumed by this system, and allow coal-fired power plants to use similar carbon capture systems without losing 20 to 40 % of the plant's output.



2007 ◽  
Vol 25 (5) ◽  
pp. 357-392 ◽  
Author(s):  
Havva Balat ◽  
Cahide Öz

This article deals with review of technical and economic aspects of Carbon Capture and Storage. Since the late 1980s a new concept is being developed which enables to make use of fossil fuels with a considerably reduced emission of carbon dioxide to the atmosphere. The concept is often called ‘Carbon Capture and Storage’ (CCS). CCS technologies are receiving increasing attention, mainly for their potential contribution to the optimal mitigation of carbon dioxide emissions that is intended to avoid future, dangerous climate change. CCS technologies attract a lot of attention because they could allow “to reduce our carbon dioxide emissions to the atmosphere whilst continuing to use fossil fuels”. CCS is not a completely new technology, e.g., the United States alone is sequestering about 8.5 MtC for enhanced oil recovery each year. Today, CCS technologies are widely recognised as an important means of progress in industrialized countries.



2021 ◽  
Vol 9 ◽  
Author(s):  
Elizabeth J. Abraham ◽  
Farah Ramadan ◽  
Dhabia M. Al-Mohannadi

Growing climate change concerns in recent years have led to an increased need for carbon dioxide emission reduction. This can be achieved by implementing the concept of circular economy, which promotes the practice of resource conservation, emission minimization, and the maintenance of sustainable revenue streams. A considerable amount of carbon dioxide emissions is a consequence of stationary sources from industrial processes. These emissions can be reduced using carbon capture utilization and storage (CCUS) or reduced at source by using emission free renewable resources. The method developed within this work uses mixed integer linear programming (MILP) to design sustainable clusters that convert seawater (including waste brine), air, and waste carbon dioxide emissions to value-added products with sunlight as the main energy source. In this way, circular economy is employed to minimize fresh resource consumption and maximize material reuse. The potential of this work is demonstrated through a case study, which shows that an industrial park may be profitable while adhering to strict emission and material constraints.



2021 ◽  
pp. 0958305X2110509
Author(s):  
R Maniarasu ◽  
Sushil Kumar Rathore ◽  
S. Murugan

In today’s world, owing to industrial expansion, urbanization, the rapid growth of the human population, and the high standard of living, the utilization of the most advanced technologies is unavoidable. The enhanced anthropogenic activities worldwide result in a continuous increase in global warming potential, thereby raising a global concern. The constant rise in global warming potential forces the world to mitigate greenhouse gases, particularly carbon dioxide. Carbon dioxide is considered as the primary contributor responsible for global warming and climatic changes. The global anthropogenic carbon dioxide emissions released into the atmosphere can eventually deteriorate the environment and endanger the ecosystem. Combating global warming is one of the main challenges in achieving sustainable development. Carbon capture and storage is a potential solution to mitigate carbon dioxide emissions. There are three main methods for carbon capture and storage: post-combustion, pre-combustion, and oxy-fuel combustion. Among them, post-combustion is used in thermal power plants and industrial sectors, all of which contribute a significant amount of carbon dioxide. Different techniques such as physical and chemical absorption, physical and chemical adsorption, membrane separation, and cryogenic distillation used for carbon capture are thoroughly discussed and presented. Currently, there are various materials including absorbents, adsorbents, and membranes used in carbon dioxide capture. Still, there is a search for new and novel materials and processes for separating and capturing carbon dioxide. This review article provides a comprehensive review of different methods, techniques, materials, and processes used for separating and capturing carbon dioxide from significant stationary point sources.



Author(s):  
J. Jeffrey Moore ◽  
Hector Delgado ◽  
Timothy Allison

In order to reduce the amount of carbon dioxide (CO2) greenhouse gases released into the atmosphere, significant progress has been made in developing technology to sequester CO2 from power plants and other major producers of greenhouse gas emissions. The compression of the captured carbon dioxide stream requires a sizeable amount of power, which impacts plant availability, capital expenditures and operational cost. Preliminary analysis has estimated that the CO2 compression process reduces the plant efficiency by 8% to 12% for a typical power plant. The goal of the present research is to reduce this penalty through development of novel compression and pumping processes. The research supports the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) objectives of reducing the energy requirements for carbon capture and sequestration in electrical power production. The primary objective of this study is to boost the pressure of CO2 to pipeline pressures with the minimal amount of energy required. Previous thermodynamic analysis identified optimum processes for pressure rise in both liquid and gaseous states. At elevated pressures, CO2 assumes a liquid state at moderate temperatures. This liquefaction can be achieved through commercially available refrigeration schemes. However, liquid CO2 turbopumps of the size and pressure needed for a typical power plant were not available. This paper describes the design, construction, and qualification testing of a 150 bar cryogenic turbopump. Unique characteristics of liquid CO2 will be discussed.



Author(s):  
Patricia N. Seevam ◽  
Julia M. Race ◽  
Martin J. Downie ◽  
Phil Hopkins

Climate change has been attributed to greenhouse gases with carbon dioxide (CO2) being the major contributor. Most of these CO2 emissions originate from the burning of fossil fuels (e.g. power plants). Governments and industry worldwide are now proposing to capture CO2 from their power plants and either store it in depleted reservoirs or saline aquifers (‘Carbon Capture and Storage’, CCS), or use it for ‘Enhanced Oil Recovery’ (EOR) in depleting oil and gas fields. The capture of this anthropogenic (man made sources of CO2) CO2 will mitigate global warming, and possibly reduce the impact of climate change. The United States has over 30 years experience with the transportation of carbon dioxide by pipeline, mainly from naturally occurring, relatively pure CO2 sources for onshore EOR. CCS projects differ significantly from this past experience as they will be focusing on anthropogenic sources from major polluters such as fossil fuel power plants, and the necessary CO2 transport infrastructure will involve both long distance onshore and offshore pipelines. Also, the fossil fuel power plants will produce CO2 with varying combinations of impurities depending on the capture technology used. CO2 pipelines have never been designed for these differing conditions; therefore, CCS will introduce a new generation of CO2 for transport. Application of current design procedures to the new generation pipelines is likely to yield an over-designed pipeline facility, with excessive investment and operating cost. In particular, the presence of impurities has a significant impact on the physical properties of the transported CO2 which affects: pipeline design; compressor/pump power; repressurisation distance; pipeline capacity. These impurities could also have implications in the fracture control of the pipeline. All these effects have direct implications for both the technical and economic feasibility of developing a carbon dioxide transport infrastructure onshore and offshore. This paper compares and contrasts the current experience of transporting CO2 onshore with the proposed transport onshore and offshore for CCS. It covers studies on the effect of physical and transport properties (hydraulics) on key technical aspects of pipeline transportation, and the implications for designing and operating a pipeline for CO2 containing impurities. The studies reported in the paper have significant implications for future CO2 transportation, and highlight a number of knowledge gaps that will have to be filled to allow for the efficient and economic design of pipelines for this ‘next’ generation of anthropogenic CO2.



Author(s):  
Paul Breeze

Burning coal to generate electricity is one of the key sources of atmospheric carbon dioxide emissions; so, targeting coal-fired power plants offers one of the easiest ways of reducing global carbon emissions. Given that the world's largest economies all rely heavily on coal for electricity production, eliminating coal combustion is not an option. Indeed, coal consumption is likely to increase over the next 20–30 years. However, the introduction of more efficient steam cycles will improve the emission performance of these plants over the short term. To achieve a reduction in carbon emissions from coal-fired plant, however, it will be necessary to develop and introduce carbon capture and sequestration technologies. Given adequate investment, these technologies should be capable of commercial development by ca 2020.



Author(s):  
Rebecca Hollis ◽  
Patrick Skutley ◽  
Carlos Ortiz ◽  
Vijo Varkey ◽  
Danise LePage ◽  
...  

Future fossil-fueled power generation systems will require emission control technologies such as carbon capture and sequestration (CCS) to comply with government greenhouse gas regulations. The three prime candidate technologies which permit carbon dioxide (CO2) to be captured and safely stored include pre-combustion, post-combustion capture and oxy-fuel (O-F) combustion. For more than a decade Clean Energy Systems, Inc. (CES) has been designing and demonstrating enabling technologies for oxy-fuel power generation; specifically steam generators, hot gas expanders and reheat combustors. Recently CES has partnered with Florida Turbine Technologies, Inc. (FTT) and Siemens Energy, Inc. to develop and demonstrate turbomachinery systems compatible with the unique characteristics of oxy-fuel working fluids. The team has adopted an aggressive, but economically viable development approach to advance turbine technology towards early product realization. Goals include short-term, incremental advances in power plant efficiency and output while minimizing capital costs and cost of electricity. Phase 2 of this development work has been greatly enhanced by a cooperative agreement with the U.S. Department of Energy (DOE). Under this program the team will design, manufacture and test a commercial-scale intermediate-pressure turbine (IPT) to be used in industrial O-F power plants. These plants will use diverse fuels and be capable of capturing 99% of the produced CO2 at competitive cycle efficiencies and cost of electricity. Initial plants will burn natural gas and generate more than 200MWe with near-zero emissions. To reduce development cost and schedule an existing gas turbine engine will be adapted for use as a high-temperature O-F IPT. The necessary modifications include the replacement of the engine’s air compressor with a thrust balance system and altering the engine’s air-breathing combustion system into a steam reheating system using direct fuel and oxygen injection. Excellent progress has been made to date. FTT has completed the detailed design and issued manufacturing drawings to convert a Siemens SGT-900 to an oxy-fuel turbine (OFT). Siemens has received, disassembled and inspected an SGT-900 B12 and ordered all necessary new components for engine changeover. Meanwhile CES has been working to upgrade an existing test facility to support demonstration of a “simple” oxy-fuel power cycle. Low-power demonstration testing of the newly assembled OFT-900 is expected to commence in late 2012.



Author(s):  
J. Jeffrey Moore ◽  
Andrew Lerche ◽  
Timothy Allison ◽  
Brian Moreland ◽  
Jorge Pacheco

In order to reduce the amount of carbon dioxide (CO2) released into the atmosphere, significant progress has been made into capturing and storing CO2 from power plants and other major producers of greenhouse gas emissions. The compression of the captured carbon dioxide stream requires significant amounts of power and can impact plant availability, and increase operational costs. Preliminary analysis has estimated that the CO2 compression process reduces plant efficiency by 8% to 12% for a typical power plant. This project supports the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) objective of reducing energy requirements for carbon capture and storage in electrical power production. The primary objective of this study is to boost the pressure of CO2 to pipeline pressures with the minimal amount of energy required. Previous thermodynamic analysis identified optimum processes for pressure rise in both liquid and gaseous states. Isothermal compression is well known to reduce the power requirements by minimizing the temperature of the gas entering subsequent stages. Intercooling is typically accomplished using external gas coolers and integrally geared compressors. For large scale compression, use of straight through centrifugal compressors, similar to those used in oil and gas applications including LNG production, is preferred due to the robustness of the design. However, intercooling between each stage is not feasible. The current research develops an internally cooled compressor diaphragm that removes heat internal to the compressor. Results documenting the design process are presented including 3D conjugate heat transfer CFD studies. Experimental demonstration of the design is performed on a sub scale centrifugal compressor closed loop test facility for a range of suction pressures.



Author(s):  
Naomi E. Vaughan ◽  
Timothy M. Lenton

We use a simple carbon cycle–climate model to investigate the interactions between a selection of idealized scenarios of mitigated carbon dioxide emissions, carbon dioxide removal (CDR) and solar radiation management (SRM). Two CO 2 emissions trajectories differ by a 15-year delay in the start of mitigation activity. SRM is modelled as a reduction in incoming solar radiation that fully compensates the radiative forcing due to changes in atmospheric CO 2 concentration. Two CDR scenarios remove 300 PgC by afforestation (added to vegetation and soil) or 1000 PgC by bioenergy with carbon capture and storage (removed from system). Our results show that delaying the start of mitigation activity could be very costly in terms of the CDR activity needed later to limit atmospheric CO 2 concentration (and corresponding global warming) to a given level. Avoiding a 15-year delay in the start of mitigation activity is more effective at reducing atmospheric CO 2 concentrations than all but the maximum type of CDR interventions. The effects of applying SRM and CDR together are additive, and this shows most clearly for atmospheric CO 2 concentration. SRM causes a significant reduction in atmospheric CO 2 concentration due to increased carbon storage by the terrestrial biosphere, especially soils. However, SRM has to be maintained for many centuries to avoid rapid increases in temperature and corresponding increases in atmospheric CO 2 concentration due to loss of carbon from the land.



Sign in / Sign up

Export Citation Format

Share Document