Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

Author(s):  
Rebecca Hollis ◽  
Patrick Skutley ◽  
Carlos Ortiz ◽  
Vijo Varkey ◽  
Danise LePage ◽  
...  

Future fossil-fueled power generation systems will require emission control technologies such as carbon capture and sequestration (CCS) to comply with government greenhouse gas regulations. The three prime candidate technologies which permit carbon dioxide (CO2) to be captured and safely stored include pre-combustion, post-combustion capture and oxy-fuel (O-F) combustion. For more than a decade Clean Energy Systems, Inc. (CES) has been designing and demonstrating enabling technologies for oxy-fuel power generation; specifically steam generators, hot gas expanders and reheat combustors. Recently CES has partnered with Florida Turbine Technologies, Inc. (FTT) and Siemens Energy, Inc. to develop and demonstrate turbomachinery systems compatible with the unique characteristics of oxy-fuel working fluids. The team has adopted an aggressive, but economically viable development approach to advance turbine technology towards early product realization. Goals include short-term, incremental advances in power plant efficiency and output while minimizing capital costs and cost of electricity. Phase 2 of this development work has been greatly enhanced by a cooperative agreement with the U.S. Department of Energy (DOE). Under this program the team will design, manufacture and test a commercial-scale intermediate-pressure turbine (IPT) to be used in industrial O-F power plants. These plants will use diverse fuels and be capable of capturing 99% of the produced CO2 at competitive cycle efficiencies and cost of electricity. Initial plants will burn natural gas and generate more than 200MWe with near-zero emissions. To reduce development cost and schedule an existing gas turbine engine will be adapted for use as a high-temperature O-F IPT. The necessary modifications include the replacement of the engine’s air compressor with a thrust balance system and altering the engine’s air-breathing combustion system into a steam reheating system using direct fuel and oxygen injection. Excellent progress has been made to date. FTT has completed the detailed design and issued manufacturing drawings to convert a Siemens SGT-900 to an oxy-fuel turbine (OFT). Siemens has received, disassembled and inspected an SGT-900 B12 and ordered all necessary new components for engine changeover. Meanwhile CES has been working to upgrade an existing test facility to support demonstration of a “simple” oxy-fuel power cycle. Low-power demonstration testing of the newly assembled OFT-900 is expected to commence in late 2012.

2021 ◽  
Vol 13 (19) ◽  
pp. 10681
Author(s):  
Don Rukmal Liyanage ◽  
Kasun Hewage ◽  
Hirushie Karunathilake ◽  
Gyan Chhipi-Shrestha ◽  
Rehan Sadiq

The energy consumption of buildings contributes significantly to global greenhouse gas (GHG) emissions. Energy use for space and water heating in buildings causes a major portion of these emissions. Natural gas (NG) is one of the dominant fuels used for building heating, emitting GHG emissions directly to the atmosphere. Many studies have been conducted on improving energy efficiency and using cleaner energy sources in buildings. However, implementing carbon capture, utilization, and storage (CCUS) on NG building heating systems is overlooked in the literature. CCUS technologies have proved their potential to reduce GHG emissions in fossil fuel power plants. However, their applicability for building-level applications has not been adequately established. A critical literature review was conducted to understand the feasibility and viability of adapting CCUS technologies to co-function in building heating systems. This study investigated the technical requirements, environmental and socio-economic impacts, and the drivers and barriers towards implementing building-level CCUS technologies. The findings indicated that implementing building-level CCUS technologies has significant overall benefits despite the marginal increase in energy consumption, operational costs, and capital costs. The information presented in this paper is valuable to academics, building owners and managers, innovators, investors, and policy makers involved in the clean energy sector.


2021 ◽  
Vol 40 (10) ◽  
pp. 712-713
Author(s):  
Scott Singleton

Carbon capture and storage (CCS) and carbon capture, utilization, and storage (CCUS) are expanding at lightning speed as the world increasingly embraces the need for a carbon-neutral future. As it is described on the U.S. Department of Energy (DOE) website, “CCUS is a process that captures carbon dioxide emissions from sources like coal-fired power plants and either reuses or stores it so it will not enter the atmosphere. Carbon dioxide storage in geologic formations includes oil and gas reservoirs, unmineable coal seams and deep saline reservoirs — structures that have stored crude oil, natural gas, brine and carbon dioxide over millions of years” ( https://www.energy.gov/carbon-capture-utilization-storage ). The International Energy Agency (IEA) states that “CCUS is the only group of technologies that contributes both to reducing emissions in key sectors directly and to removing CO2 to balance emissions that are challenging to avoid – a critical part of “net-zero” goals. After years of slow progress, new investment incentives and strengthened climate goals are building new momentum behind CCUS” ( https://www.iea.org/reports/ccus-in-clean-energy-transitions ).


1983 ◽  
Vol 105 (2) ◽  
pp. 348-353 ◽  
Author(s):  
D. E. Wright ◽  
L. L. Tignac

Rocketdyne is under contract to the Department of Energy for the development of heat exchanger technology that will allow coal to be burned for power generation and cogeneration applications. This effort involves both atmospheric fluidized bed and pulverized coal combustion systems. In addition, the heat exchanger designs cover both metallic and ceramic materials for high-temperature operations. This paper reports on the laboratory and small AFB test results completed to date. It also covers the design and installation of a 6×6 ft atmospheric fluidized bed test facility being used to correlate and expand the knowledge gained from the initial tests. The paper concludes by showing the direction this technology is taking and outlining the steps to follow in subsequent programs.


2014 ◽  
Vol 63 ◽  
pp. 7541-7557 ◽  
Author(s):  
Kristin Gerdes ◽  
Robert Stevens ◽  
Timothy Fout ◽  
James Fisher ◽  
Gregory Hackett ◽  
...  

Author(s):  
Andrea Ciani ◽  
John P. Wood ◽  
Anders Wickström ◽  
Geir J. Rørtveit ◽  
Rosetta Steeneveldt ◽  
...  

Abstract Today gas turbines and combined cycle power plants play an important role in power generation and in the light of increasing energy demand, their role is expected to grow alongside renewables. In addition, the volatility of renewables in generating and dispatching power entails a new focus on electricity security. This reinforces the importance of gas turbines in guaranteeing grid reliability by compensating for the intermittency of renewables. In order to achieve the Paris Agreement’s goals, power generation must be decarbonized. This is where hydrogen produced from renewables or with CCS (Carbon Capture and Storage) comes into play, allowing totally CO2-free combustion. Hydrogen features the unique capability to store energy for medium to long storage cycles and hence could be used to alleviate seasonal variations of renewable power generation. The importance of hydrogen for future power generation is expected to increase due to several factors: the push for CO2-free energy production is calling for various options, all resulting in the necessity of a broader fuel flexibility, in particular accommodating hydrogen as a future fuel feeding gas turbines and combined cycle power plants. Hydrogen from methane reforming is pursued, with particular interest within energy scenarios linked with carbon capture and storage, while the increased share of renewables requires the storage of energy for which hydrogen is the best candidate. Compared to natural gas the main challenge of hydrogen combustion is its increased reactivity resulting in a decrease of engine performance for conventional premix combustion systems. The sequential combustion technology used within Ansaldo Energia’s GT36 and GT26 gas turbines provides for extra freedom in optimizing the operation concept. This sequential combustion technology enables low emission combustion at high temperatures with particularly high fuel flexibility thanks to the complementarity between its first stage, stabilized by flame propagation and its second (sequential) stage, stabilized by auto-ignition. With this concept, gas turbines are envisaged to be able to provide reliable, dispatchable, CO2-free electric power. In this paper, an overview of hydrogen production (grey, blue, and green hydrogen), transport and storage are presented targeting a CO2-free energy system based on gas turbines. A detailed description of the test infrastructure, handling of highly reactive fuels is given with specific aspects of the large amounts of hydrogen used for the full engine pressure tests. Based on the results discussed at last year’s Turbo Expo (Bothien et al. GT2019-90798), further high pressure test results are reported, demonstrating how sequential combustion with novel operational concepts is able to achieve the lowest emissions, highest fuel and operational flexibility, for very high combustor exit temperatures (H-class) with unprecedented hydrogen contents.


Author(s):  
Mohammad Mansouri Majoumerd ◽  
Mohsen Assadi ◽  
Peter Breuhaus ◽  
Øystein Arild

The overall goal of the European co-financed H2-IGCC project was to provide and demonstrate technical solutions for highly efficient and reliable gas turbine technology in the next generation of integrated gasification combined cycle (IGCC) power plants with CO2 capture suitable for combusting undiluted H2-rich syngas. This paper aims at providing an overview of the main activities performed in the system analysis working group of the H2-IGCC project. These activities included the modeling and integration of different plant components to establish a baseline IGCC configuration, adjustments and modifications of the baseline configuration to reach the selected IGCC configuration, performance analysis of the selected plant, performing techno-economic assessments and finally benchmarking with competing fossil-based power technologies. In this regard, an extensive literature survey was performed, validated models (components and sub-systems) were used, and inputs from industrial partners were incorporated into the models. Accordingly, different plant components have been integrated considering the practical operation of the plant. Moreover, realistic assumptions have been made to reach realistic techno-economic evaluations. The presented results show that the efficiency of the IGCC plant with CO2 capture is 35.7% (lower heating value basis). The results also confirm that the efficiency is reduced by 11.3 percentage points due to the deployment of CO2 capture in the IGCC plant. The specific capital costs for the IGCC plant with capture are estimated to be 2,901 €/(kW net) and the cost of electricity for such a plant is 90 €/MWh. It is also shown that the natural gas combined cycle without CO2 capture requires the lowest capital investment, while the lowest cost of electricity is related to IGCC plant without CO2 capture.


Author(s):  
P. J. Dechamps

Natural gas fired combined cycle power plants now take a substantial share of the power generation market, mainly because they can be delivering power with a remarkable efficiency shortly after the decision to install is taken, and because they are a relatively low capital cost option. The power generation markets becoming more and more competitive in terms of the cost of electricity, the trend is to go for high performance equipments, notably as far as the gas turbine and the heat recovery steam generator are concerned. The heat recovery steam generator is the essential link in the combined cycle plant, and should be optimized with respect to the cost of electricity. This asks for a techno-economic optimization with an objective function which comprises both the plant efficiency and the initial investment. This paper applies on an example the incremental cost method, which allows to optimize parameters like the pinch points and the superheat temperatures. The influence of the plant load duty on this optimization is emphasized. This is essential, because the load factor will not usually remain constant during the plant life-time. The example which is presented shows the influence of the load factor, which is important, as the plant goes down in merit order with time, following the introduction of more modern, more efficient power plants on the same grid.


2022 ◽  
Vol 7 ◽  
pp. 9
Author(s):  
Seyed Amir Kaboli ◽  
Reyhaneh Nazmabadi

There continues to be significant attention and investment in wind power generation, which can supply a high percentage of the global demand for renewable energy if harvested efficiently. The research study is based on techno-economic analysis of the feasibility of implementing wind power generation in Kuwait with a power generation capacity of 105 MW based on 50 wind turbines, which has a major requirement for clean energy. The study focused on three main areas of analysis and numerical modeling using the RETScreen software tool. The first area involved evaluating the performance and efficacy of generating wind power by collecting, analyzing, and modeling data on observed wind levels, wind turbine operation, and wind power generation. The second area comprised an environmental impact review to assess the environmental benefits of implementing wind power. The third area involved economic analysis of installing wind power in Kuwait. The analysis was undertaken to assess the energy recovery time for wind energy and determine the mitigation of global warming and pollution levels, the decrease of toxic emissions, and any cost savings from implementing clean energy systems in Kuwait. Additionally, sensitivity analysis was undertaken to determine the impact of certain variables in the modeling process. The results are used to estimate that the energy price would be $0.053 per kWh for a power generation capacity of 105 MWh based on an initial cost of $168 million and O&M of $5 million for 214,000 MWh of electricity exported to the grid. Moreover, the wind turbine farm will potentially avoid the emission of approximately 1.8 million tonnes of carbon dioxide per year, thereby saving approximately $9 million over 20 years spent installing carbon capture systems for conventional power plants. The wind farm containing a simple wind turbine is estimated to have a payback period of 9.1 years.


Author(s):  
S. Can Gülen ◽  
Indrajit Mazumder

Cost of electricity (COE) is the most widely used metric to quantify the cost-performance trade-off involved in comparative analysis of competing electric power generation technologies. Unfortunately, the currently accepted formulation of COE is only applicable to comparisons of power plant options with the same annual electric generation (kilowatt-hours) and the same technology as defined by reliability, availability, and operability. Such a formulation does not introduce a big error into the COE analysis when the objective is simply to compare two or more base-loaded power plants of the same technology (e.g., natural gas fired gas turbine simple or combined cycle, coal fired conventional boiler steam turbine, etc.) and the same (or nearly the same) capacity. However, comparing even the same technology class power plants, especially highly flexible advanced gas turbine combined cycle units with cyclic duties, comprising a high number of daily starts and stops in addition to emissions-compliant low-load operation to accommodate the intermittent and uncertain load regimes of renewable power generation (mainly wind and solar) requires a significant overhaul of the basic COE formula. This paper develops an expanded COE formulation by incorporating crucial power plant operability and maintainability characteristics such as reliability, unrecoverable degradation, and maintenance factors as well as emissions into the mix. The core impact of duty cycle on the plant performance is handled via effective output and efficiency utilizing basic performance correction curves. The impact of plant start and load ramps on the effective performance parameters is included. Differences in reliability and total annual energy generation are handled via energy and capacity replacement terms. The resulting expanded formula, while rigorous in development and content, is still simple enough for most feasibility study type of applications. Sample calculations clearly reveal that inclusion (or omission) of one or more of these factors in the COE evaluation, however, can dramatically swing the answer from one extreme to the other in some cases.


Author(s):  
J. Jeffrey Moore ◽  
Hector Delgado ◽  
Timothy Allison

In order to reduce the amount of carbon dioxide (CO2) greenhouse gases released into the atmosphere, significant progress has been made in developing technology to sequester CO2 from power plants and other major producers of greenhouse gas emissions. The compression of the captured carbon dioxide stream requires a sizeable amount of power, which impacts plant availability, capital expenditures and operational cost. Preliminary analysis has estimated that the CO2 compression process reduces the plant efficiency by 8% to 12% for a typical power plant. The goal of the present research is to reduce this penalty through development of novel compression and pumping processes. The research supports the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) objectives of reducing the energy requirements for carbon capture and sequestration in electrical power production. The primary objective of this study is to boost the pressure of CO2 to pipeline pressures with the minimal amount of energy required. Previous thermodynamic analysis identified optimum processes for pressure rise in both liquid and gaseous states. At elevated pressures, CO2 assumes a liquid state at moderate temperatures. This liquefaction can be achieved through commercially available refrigeration schemes. However, liquid CO2 turbopumps of the size and pressure needed for a typical power plant were not available. This paper describes the design, construction, and qualification testing of a 150 bar cryogenic turbopump. Unique characteristics of liquid CO2 will be discussed.


Sign in / Sign up

Export Citation Format

Share Document