In vitro and in vivo activities of KRN330, a fully human monoclonal antibody against colon cancer.

2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 432-432 ◽  
Author(s):  
N. Sawada ◽  
E. Taguchi ◽  
M. Takahashi

432 Background: KRN330 is a novel recombinant human IgG1 monoclonal antibody (mAb) targeting A33 surface differentiation antigen that is uniformly expressed on the surface of 95% of colorectal cancer (CRC) cells. In this study, we characterized the activity of KRN330 for its in vitro properties, as well as for its in vivo antitumor activity. Methods: A kinetic analysis of the interaction between KRN330 and recombinant human A33 was conducted using a Biacore 3000. Western blot analysis was conducted using A33 expressing COLO205 lysates under reducing and non-reducing conditions. Binding of KRN330 to human colorectal cancer tissues were investigated using FITC-labeled KRN330. We also developed more conventional staining methods of A33 and investigated A33 expression using human colon cancer tissue microarray (TMA). ADCC and CDC activities of KRN330 were assessed using a standard 51Cr release assay. A33 expression levels of 14 CRC cell lines were analyzed using flow cytometer. In vivo antitumor activities of KRN330 alone or in combination with chemotherapeutic agents against subcutaneous or intraperiotoneal human CRC (COLO205 and LS174T) models were investigated using mice and rats xenograft model. Results: A kinetic analysis revealed that KRN330 showed a high binding affinity to A33. Western blot analysis also showed that antibody recognized not any protein under reducing condition, but non-reducing condition. A33 staining of TMA with 204 different samples revealed the majority of tumor expressed A33. KRN330 exhibited ADCC activity against A33 expressing human colorectal cancer cell lines which include both K-ras wild and mutated types. KRN330 showed dose-dependent antitumor activities in vivo. KRN330 also significantly prolonged survival of human colon tumor bearing mice. In addition, combination treatment of KRN330 with irinotecan showed increased antitumor activitiy and prolongation of survival, compared to either irinotecan or KRN330 alone. Conclusions: These results suggest that KRN330 is a promising candidate of novel therapy for CRC. The phase I/II study of KRN330 plus irinotecan in patients with second line metastatic CRC is ongoing. [Table: see text]

2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 235-235 ◽  
Author(s):  
L. A. Diaz ◽  
N. S. Azad ◽  
D. Laheru ◽  
D. T. Le ◽  
C. E. Devoe ◽  
...  

235 Background: NPC-1C (ensituximab) is a chimeric monoclonal antibody being developed as a novel biologic treatment for pancreatic and colorectal cancers. This antibody was selected from a panel of hybridomas generated from mice immunized with semi-purified membrane-associated proteins derived from biologically screened, pooled human allogeneic colon cancer tissues. The NPC-1C epitope appears to be expressed specifically by human colon and pancreatic tumor tissues and cell lines. Methods: Antitumor activity was established in vitro by measuring ADCC with a standard 4-hour 111-Indium release assay on pancreatic and colorectal cancer cell lines. In vivo antitumor efficacy of NPC-1C was tested using pre-established subcutaneous human pancreatic tumor xenograft models. Results: In vitro, the NPC-1C antibody exhibits ADCC activity specifically against human colon and pancreatic tumor cells, but not against control tumor cell lines. The in vivo data showed significant, and reproducible, antitumor action, including some complete tumor regressions. The clinical application for this antibody was bolstered by several examples of human tumor tissues stained with biotin-conjugated NPC-1C that showed a strong correlation of NPC-1C staining against pancreatic and colon tumors. Approximately 45% of tumors stained strongly positive. The staining pattern was typical of elaborated mucin expression, but also showed cytoplasmic and cell membrane staining. Conclusions: A phase I open label, multicenter dose escalation clinical trial with NPC-1C is currently accruing patients with advanced pancreatic and colorectal cancer who are refractory to standard therapy. The primary objectives of the phase I clinical trial are to determine the safety and tolerability of escalating doses of NPC-1C monoclonal antibody therapy and to assess pharmacokinetics and select immune responses to the antibody at each dose level. Secondary objectives are to evaluate evidence of clinical benefit and to explore the immunologic correlates associated with administration of NPC-1C. Results from this trial will determine the minimum standard dosage levels to be used in further trials. [Table: see text]


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazim Husain ◽  
Domenico Coppola ◽  
Chung S. Yang ◽  
Mokenge P. Malafa

AbstractThe activation and growth of tumour-initiating cells with stem-like properties in distant organs characterize colorectal cancer (CRC) growth and metastasis. Thus, inhibition of colon cancer stem cell (CCSC) growth holds promise for CRC growth and metastasis prevention. We and others have shown that farnesyl dimethyl chromanol (FDMC) inhibits cancer cell growth and induces apoptosis in vitro and in vivo. We provide the first demonstration that FDMC inhibits CCSC viability, survival, self-renewal (spheroid formation), pluripotent transcription factors (Nanog, Oct4, and Sox2) expression, organoids formation, and Wnt/β-catenin signalling, as evidenced by comparisons with vehicle-treated controls. In addition, FDMC inhibits CCSC migration, invasion, inflammation (NF-kB), angiogenesis (vascular endothelial growth factor, VEGF), and metastasis (MMP9), which are critical tumour metastasis processes. Moreover, FDMC induced apoptosis (TUNEL, Annexin V, cleaved caspase 3, and cleaved PARP) in CCSCs and CCSC-derived spheroids and organoids. Finally, in an orthotopic (cecum-injected CCSCs) xenograft metastasis model, we show that FDMC significantly retards CCSC-derived tumour growth (Ki-67); inhibits inflammation (NF-kB), angiogenesis (VEGF and CD31), and β-catenin signalling; and induces apoptosis (cleaved PARP) in tumour tissues and inhibits liver metastasis. In summary, our results demonstrate that FDMC inhibits the CCSC metastatic phenotype and thereby supports investigating its ability to prevent CRC metastases.


2020 ◽  
Author(s):  
Sheng Zhao ◽  
Wen-Bin Pan ◽  
Hui-Jie Jiang ◽  
Rong-Jun Zhang ◽  
Hao Jiang ◽  
...  

Abstract Background : Preclinical and clinical studies have demonstrated that immunotherapy has effectively delayed tumor progression, and the clinical outcomes of anti-PD-1/PD-L1 therapy were related to PD-L1 expression level in the tumors. A 131 I-labeled anti-PD-L1 monoclonal antibody tracer, 131 I-PD-L1-Mab, was developed to study the target ability of non-invasive Cerenkov luminescence imaging in colorectal cancer xenograft mice.Method: Anti-PD-L1 monoclonal antibody labeled with 131 I( 131 I-PD-L1-Mab), and in vitro binding assays were used to evaluate the affinity of 131 I-PD-L1-Mab to PD-L1 and their binding level to different colorectal cancer cells, and compared with flow cytometry, western blot analysis, and immunofluorescence staining. The clinical application value of 131 I-PD-L1-Mab was evaluated through biodistribution and Cerenkov luminescence imaging, and different tumor-bearing models expressing PD-L1 were evaluated.Results: 131 I-PD-L1-Mab showed high affinity to PD-L1, and the equilibrium dissociation constant was 1.069×10 -9 M. The competitive inhibition assay further confirmed the specific binding ability of 131 I-PD-L1-Mab. In four different tumor-bearing models with different PD-L1 expression, the biodistribution and Cerenkov luminescence imaging showed that the RKO tumors demonstrated the highest uptake of the tracer 131 I-PD-L1-Mab, with a maximum uptake of 1.613 ± 0.738% ID/g at 120 h.Conclusions: There is a great potential for 131 I-PD-L1-Mab noninvasive Cerenkov luminescence imaging to assess the status of tumor PD-L1 expression and select patients for anti-PD-L1 targeted therapy.


2002 ◽  
Vol 13 (5) ◽  
pp. 533-543 ◽  
Author(s):  
Jane-Jen Wang ◽  
Yaw-Terng Chern ◽  
Yuh-Fang Chang ◽  
Tsung-Yun Liu ◽  
Chin-Wen Chi

Author(s):  
Zhichen Pu ◽  
Weiwei Zhang ◽  
Minhui Wang ◽  
Maodi Xu ◽  
Haitang Xie ◽  
...  

Colon cancer, a common type of malignant tumor, seriously endangers human health. However, due to the relatively slow progress in diagnosis and treatment, the clinical therapeutic technology of colon cancer has not been substantially improved in the past three decades. The present study was designed to investigate the effects and involved mechanisms of schisandrin B in cell growth and metastasis of colon cancer. C57BL/6 mice received AOM and dextran sulfate sodium. Mice in treatment groups were gavaged with 3.75–30 mg/kg/day of schisandrin B. Transwell chamber migration, enzyme-linked immunosorbent assay (ELISA), Western blot analysis, immunoprecipitation (IP) and immunofluorescence were conducted, and HCT116 cell line was employed in this study. Data showed that schisandrin B inhibited tumor number and tumor size in the AOD+DSS-induced colon cancer mouse model. Schisandrin B also inhibited cell proliferation and metastasis of colon cancer cells. We observed that schisandrin B induced SMURF2 protein expression and affected SIRT1 in vitro and in vivo. SMURF2 interacted with SIRT1 protein, and there was a negative correlation between SIRT1 and SMURF2 expressions in human colorectal cancer. The regulation of SMURF2 was involved in the anticancer effects of schisandrin B in both in vitro and in vivo models. In conclusion, the present study revealed that schisandrin B suppressed SIRT1 protein expression, and SIRT1 is negatively correlated with the induction of SMURF2, which inhibited cell growth and metastasis of colon cancer. Schisandrin B could be a leading compound, which will contribute to finding novel potential agents and therapeutic targets for colon cancer.


2020 ◽  
Author(s):  
Qing Song ◽  
Liu Yang ◽  
Zhifen Han ◽  
Xinnan Wu ◽  
Ruixiao Li ◽  
...  

Abstract Background: Tanshinone IIA (Tan IIA) is a major active ingredient extracted from Salvia miltiorrhiza, which has been proved to inhibit metastasis of various cancers including colorectal cancer (CRC). However, the detailed mechanisms of Tan IIA against CRC metastasis are not well explored. Epithelial-to-mesenchymal transition (EMT) exerts an important regulatory role in CRC metastasis, and our previous mechanism studies demonstrated that β-arrestin1 could regulate CRC EMT partly through β-catenin signaling pathway. Therefore, in this work we investigated whether Tan IIA could regulate CRC EMT through β-arrestin1-mediated β-catenin signaling pathway in vivo and in vitro.Methods: The nude mice tail vein metastasis model was established to observe the effect of Tan IIA on CRC lung metastasis in vivo. The lung metastasis was evaluated by living animal imaging and hemaoxylin-eosin staining. The migratory ability of CRC cells in vitro were measured by transwell and wound healing assays. The protein expression and cellular localization of β-arrestin1 and β-catenin were characterized by immunofluorescence staining and western blot. The β-catenin signaling pathway related proteins and EMT associated proteins in CRC cells were detected by western blot and immunohistochemistry. Results: Our results showed that Tan IIA inhibited the lung metastases of CRC cells in vivo and extended the survival time of nude mice. In vitro, Tan IIA increased the expression of E-cadherin, decreased the secretion of Snail, N-cadherin and Vimentin, thus suppressed EMT and the migratory ability of CRC cells. Further study found the mechanism involving in Tan IIA regulating EMT and metastasis, referring to the suppression of β-arrestin1 expression, reduction of β-catenin nuclear localization, thereby the decreased activity of β-catenin signaling. Conclusion: Our data revealed a new mechanism of Tan IIA on the suppression of EMT and metastasis in CRC via β-arrestin1-mediated β-catenin signaling pathway, and provided support for Tan IIA as anti-metastatic agents in CRC.


2019 ◽  
Vol 18 ◽  
pp. 153473541988915 ◽  
Author(s):  
Ivan Ruvinov ◽  
Christopher Nguyen ◽  
Benjamin Scaria ◽  
Caleb Vegh ◽  
Ola Zaitoon ◽  
...  

Current chemotherapeutics for metastatic colorectal cancers have limited success and are extremely toxic due to nonselective targeting. Some natural extracts have been traditionally taken and have shown anticancer activity. These extracts have multiple phytochemicals that can target different pathways selectively in cancer cells. We have shown previously that lemongrass ( Cymbopogon citratus) extract is effective at inducing cell death in human lymphomas. However, the efficacy of lemongrass extract on human colorectal cancer has not been investigated. Furthermore, its interactions with current chemotherapies for colon cancer is unknown. In this article, we report the anticancer effects of ethanolic lemongrass extract in colorectal cancer models, and importantly, its interactions with FOLFOX and Taxol. Lemongrass extract induced apoptosis in colon cancer cells in a time and dose-dependent manner without harming healthy cells in vitro. Oral administration of lemongrass extract was well tolerated and effective at inhibiting colon cancer xenograft growth in mice. It enhanced the anticancer efficacy of FOLFOX and, interestingly, inhibited FOLFOX-related weight loss in animals given the combination treatment. Furthermore, feeding lemongrass extract to APCmin/+ transgenic mice led to the reduction of intestinal tumors, indicating its preventative potential. Therefore, this natural extract has potential to be developed as a supplemental treatment for colorectal cancer.


2019 ◽  
Vol 8 (12) ◽  
pp. 5662-5672 ◽  
Author(s):  
Sonoko Chikamatsu ◽  
Ken Saijo ◽  
Hiroo Imai ◽  
Koichi Narita ◽  
Yoshifumi Kawamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document