Stochastic cancer-immune coevolution: Implications for cancer incidence and immunotherapeutic efficacy.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14023-e14023
Author(s):  
Jason T George ◽  
Herbert Levine ◽  
Jeffrey J. Molldrem ◽  
Haven Garber

e14023 Background: Despite recent progress, robust treatment strategies that lead to durable remission are still lacking for many cancer types. This disease is difficult to treat owing in part to the complexity introduced by a heterogeneous population of cancer cells capable of evolving mechanisms of resistance to traditional therapy. Nonetheless, the discovery and continued optimization of T-cell immunotherapy has revolutionized the treatment of many cancers. This treatment strategy stands out from other approaches in its unique ability to co-evolve alongside an evading tumor. While promising, such therapies are also complex. For example, allogeneic stem cell transplantation leverages a donor-derived T-cell repertoire to treat patients with refractory hematologic malignancies and relies upon a delicate balance between desirable anti-tumor effects and potentially life-threatening graft-versus-host-disease. Currently, the decision to utilize this therapy and others like it is largely influenced by prior empirical evidence. Thus, there is great need for quantitative models of the cancer-immune interaction to generate testable predictions of treatment outcome, which could then be validated prior to T-cell immunotherapy administration. Methods: We develop a foundational mathematical model to investigate the properties of stochastic tumor-immune co-evolution using applied stochastic process theory and probabilistic analysis. We use this model to predict the effects of reduced immunity, T-cell diversity, and thymic turnover rates on cancer incidence, and compare model simulations to cancer evolutionary data. Results: We predict that changes in T-cell diversity, and to a lesser degree thymic turnover, increase the chance of tumor progression. When applied to experimental data, we demonstrate that the observations are consistent with co-evolution between an indolent cancer population and the adaptive immune system prior to clinical disease. Conclusions: Our results provide a fundamental framework for analyzing the interaction dynamics of an evolving threat like cancer and the adaptive immune system in order to better understand and predict immunotherapeutic efficacy.

2013 ◽  
Vol 110 (31) ◽  
pp. E2905-E2914 ◽  
Author(s):  
C. Sinclair ◽  
I. Bains ◽  
A. J. Yates ◽  
B. Seddon

2018 ◽  
Author(s):  
Armita Nourmohammad ◽  
Jakub Otwinowski ◽  
Marta Łuksza ◽  
Thierry Mora ◽  
Aleksandra M Walczak

AbstractDuring chronic infection, HIV-1 engages in a rapid coevolutionary arms race with the host’s adaptive immune system. While it is clear that HIV exerts strong selection on the adaptive immune system, the characteristics of the somatic evolution that shape the immune response are still unknown. Traditional population genetics methods fail to distinguish chronic immune response from healthy repertoire evolution. Here, we infer the evolutionary modes of B-cell repertoires and identify complex dynamics with a constant production of better B-cell receptor mutants that compete, maintaining large clonal diversity and potentially slowing down adaptation. A substantial fraction of mutations that rise to high frequencies in pathogen engaging CDRs of B-cell receptors (BCRs) are beneficial, in contrast to many such changes in structurally relevant frameworks that are deleterious and circulate by hitchhiking. We identify a pattern where BCRs in patients who experience larger viral expansions undergo stronger selection with a rapid turnover of beneficial mutations due to clonal interference in their CDR3 regions. Using population genetics modeling, we show that the extinction of these beneficial mutations can be attributed to the rise of competing beneficial alleles and clonal interference. The picture is of a dynamic repertoire, where better clones may be outcompeted by new mutants before they fix.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4944-4944
Author(s):  
Bryan Howie ◽  
Harlan Robins ◽  
Christopher S Carlson

Abstract B and T lymphocytes are effector cells of the adaptive immune system. These cells express surface receptors that bind a huge variety of antigens, and together they comprise a person’s immune repertoire. A diverse repertoire is essential for mounting robust immune responses against a wide range of pathogens, and repertoire diversity affects the probability that DNA sequencing can uniquely tag a clonally expanded population of cells for the detection of minimum residual disease (MRD) during cancer treatment. Immune repertoire diversity arises partly through the combinatorial splicing of gene segments from the variable (V), diversity (D), and joining (J) regions of a B or T cell receptor locus. Much additional diversity is created through the stochastic insertion and deletion of nucleotides at the splice junctions, and by somatic hypermutation (SHM) in maturing lymphocytes. The generation of junctional diversity is an important part of this process, but it may be constrained by the underlying biological mechanisms. To explore the landscape of junctional diversity among immune receptor loci, we developed a likelihood model that can annotate VDJ junctions in the presence of SHM and compute the probability that a given receptor sequence was generated only once in a person’s repertoire, which is essential for tracking MRD. Using high-throughput sequencing data from several individuals and a range of receptor loci, we identify mechanistic constraints that limit B and T cell receptor diversity. For example, we show that the usual variability in CDR3 length is reduced at the immunoglobulin kappa (IgK) locus, and we connect this finding to sequence motifs that constrain nucleotide deletion at the ends of IgK gene segments. Our findings will inform future genetic studies of the adaptive immune system, and they provide quantitative guidance for deciding which cancer clones can be tracked for reliable MRD detection. Disclosures: Howie: Adaptive Biotechnologies: Employment, Equity Ownership. Robins:Adaptive Biotechnologies: Consultancy, Equity Ownership, Patents & Royalties. Carlson:Adaptive Biotechnologies: Consultancy, Equity Ownership, Patents & Royalties.


2019 ◽  
Vol 36 (10) ◽  
pp. 2184-2194 ◽  
Author(s):  
Armita Nourmohammad ◽  
Jakub Otwinowski ◽  
Marta Łuksza ◽  
Thierry Mora ◽  
Aleksandra M Walczak

Abstract During chronic infection, HIV-1 engages in a rapid coevolutionary arms race with the host’s adaptive immune system. While it is clear that HIV exerts strong selection on the adaptive immune system, the characteristics of the somatic evolution that shape the immune response are still unknown. Traditional population genetics methods fail to distinguish chronic immune response from healthy repertoire evolution. Here, we infer the evolutionary modes of B-cell repertoires and identify complex dynamics with a constant production of better B-cell receptor (BCR) mutants that compete, maintaining large clonal diversity and potentially slowing down adaptation. A substantial fraction of mutations that rise to high frequencies in pathogen-engaging CDRs of BCRs are beneficial, in contrast to many such changes in structurally relevant frameworks that are deleterious and circulate by hitchhiking. We identify a pattern where BCRs in patients who experience larger viral expansions undergo stronger selection with a rapid turnover of beneficial mutations due to clonal interference in their CDR3 regions. Using population genetics modeling, we show that the extinction of these beneficial mutations can be attributed to the rise of competing beneficial alleles and clonal interference. The picture is of a dynamic repertoire, where better clones may be outcompeted by new mutants before they fix.


2021 ◽  
Vol 22 (6) ◽  
pp. 2954
Author(s):  
Alison Jee ◽  
Samantha Christine Sernoskie ◽  
Jack Uetrecht

Idiosyncratic drug-induced liver injury (IDILI) remains a significant problem for patients and drug development. The idiosyncratic nature of IDILI makes mechanistic studies difficult, and little is known of its pathogenesis for certain. Circumstantial evidence suggests that most, but not all, IDILI is caused by reactive metabolites of drugs that are bioactivated by cytochromes P450 and other enzymes in the liver. Additionally, there is overwhelming evidence that most IDILI is mediated by the adaptive immune system; one example being the association of IDILI caused by specific drugs with specific human leukocyte antigen (HLA) haplotypes, and this may in part explain the idiosyncratic nature of these reactions. The T cell receptor repertoire likely also contributes to the idiosyncratic nature. Although most of the liver injury is likely mediated by the adaptive immune system, specifically cytotoxic CD8+ T cells, adaptive immune activation first requires an innate immune response to activate antigen presenting cells and produce cytokines required for T cell proliferation. This innate response is likely caused by either a reactive metabolite or some form of cell stress that is clinically silent but not idiosyncratic. If this is true it would make it possible to study the early steps in the immune response that in some patients can lead to IDILI. Other hypotheses have been proposed, such as mitochondrial injury, inhibition of the bile salt export pump, unfolded protein response, and oxidative stress although, in most cases, it is likely that they are also involved in the initiation of an immune response rather than representing a completely separate mechanism. Using the clinical manifestations of liver injury from a number of examples of IDILI-associated drugs, this review aims to summarize and illustrate these mechanistic hypotheses.


2021 ◽  
Author(s):  
Sarah A Johnson ◽  
Spencer L Seale ◽  
Rachel M Gittelman ◽  
Julie A Rytlewski ◽  
Harlan S Robins ◽  
...  

The human adaptive immune system must generate extraordinary diversity to be able to respond to all possible pathogens. The T-cell repertoire derives this high diversity through somatic recombination of the T-cell receptor (TCR) locus, a random process that results in repertoires that are largely private to each individual. However, certain factors such as low junctional diversity, thymic selection, and T-cell proliferation upon antigen exposure can affect TCR sharing among individuals. By immunosequencing the TCRβ variable region of 426 healthy individuals, we find that fewer than 1% of TCRβ clones are shared between individuals on average, consistent with largely private TCRβ repertoires. However, we detect a significant correlation between increased HLA allele sharing and increased number of shared TCRβ clones, with each additional shared HLA allele contributing to an increase in ~0.01% of the total TCRβ clones being shared, supporting a key role for HLA type in shaping the immune repertoire. Surprisingly, we find that shared antigen exposure to CMV leads to fewer shared TCRβ clones, even after controlling for HLA, indicative of a largely private response to major viral antigenic exposure. Consistent with this hypothesis, we find that increased age is correlated with decreased overall TCRβ clone sharing, indicating that the pattern of private TCRβ clonal expansion is a general feature of the T-cell response to other infectious antigens. All of these factors contribute to shaping the TCRβ repertoire, and understanding their interplay has important implications for the use of T cells for therapeutics and diagnostics.


Author(s):  
Pieter Meysman ◽  
Anna Postovskaya ◽  
Nicolas De Neuter ◽  
Benson Ogunjimi ◽  
Kris Laukens

Much is still not understood about the human adaptive immune response to SARS-CoV-2, the causative agent of COVID-19. In this paper, we demonstrate the use of machine learning to classify SARS-CoV-2 epitope specific T-cell clonotypes in T-cell receptor (TCR) sequencing data. We apply these models to public TCR data and show how they can be used to study T-cell longitudinal profiles in COVID-19 patients to characterize how the adaptive immune system reacts to the SARS-CoV-2 virus. Our findings confirm prior knowledge that SARS-CoV-2 reactive T-cell diversity increases over the course of disease progression. However our results show a difference between those T cells that react to epitope unique to SARS-CoV-2, which show a more prominent increase, and those T cells that react to epitopes common to other coronaviruses, which begin at a higher baseline.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 224
Author(s):  
Michiel GH Betjes

Progressive loss of renal function is associated with a series of changes of the adaptive immune system which collectively constitute premature immunological ageing. This phenomenon contributes significantly to the mortality and morbidity of end-stage renal disease (ESRD) patients. In this review, the effect of ESRD on the T cell part of the adaptive immune system is highlighted. Naïve T cell lymphopenia, in combination with the expansion of highly differentiated memory T cells, are the hallmarks of immunological ageing. The decreased production of newly formed T cells by the thymus is critically involved. This affects both the CD4 and CD8 T cell compartment and may contribute to the expansion of memory T cells. The expanding populations of memory T cells have a pro-inflammatory phenotype, add to low-grade inflammation already present in ESRD patients and destabilize atherosclerotic plaques. The effect of loss of renal function on the thymus is not reversed after restoring renal function by kidney transplantation and constitutes a long-term mortality risk factor. Promising results from animal experiments have shown that rejuvenation of the thymus is a possibility, although not yet applicable in humans.


Sign in / Sign up

Export Citation Format

Share Document