The effect of simulator motion on parameter training for F-16 pilots

Author(s):  
Jelke van der Pal
Keyword(s):  
2011 ◽  
Vol 460-461 ◽  
pp. 704-709
Author(s):  
Shu Tao Zheng ◽  
Zheng Mao Ye ◽  
Jun Jin ◽  
Jun Wei Han

Vehicle driving simulators are widely employed in training and entertainment utilities because of its safe, economic and efficient. Amphibious vehicle driving simulator was used to simulate amphibious vehicle on land and in water. Because of the motion difference between aircraft and amphibious vehicle, it is necessary to design a reasonable 6-DOF motion system according to the flight simulator motion system standard and vehicle motion parameter. FFT of DSP and PSD were used to analysis the relationship between them. Finally according to the result analysis, a set of reasonable 6-DOF motion system motion parameter was given to realize the driving simulator motion cueing used to reproduce vehicle acceleration.


Author(s):  
Peter Grant ◽  
Jeffrey S. Freeman ◽  
Rob Vail ◽  
Frank Huck

Abstract A multi-phased evaluation of the Iowa Driving Simulator as a virtual proving ground for construction equipment simulation is presented. In Phase I the Iowa Driving Simulator was evaluated in an “open-loop” mode to assess its capability to simulate a typical maneuver common to wheel loader operation, and its viability as a test platform for human subject evaluation of those maneuvers. A typical wheel loader truck loading cycle involves numerous directional shifts. Cycle productivity is increased if these shifts are executed at full engine throttle. Jerk and acceleration levels associated with full throttle shifts, however, can cause both operator discomfort and spillage of loaded material. Electronically controlled transmissions have the potential to both minimize directional shift times and material loss while optimizing operator comfort. This optimization will require an understanding of the factors which affect operator comfort during shifts. A study was therefore devised to determine those aspects of the motion generated by a directional shift which affect operator comfort. The Iowa Driving Simulator motion system was used to present operators with a series of acceleration time histories which are representative of various shift strategies. The operators rated the relative comfort of each strategy during paired comparison tests. Limitations of the simulator motion system prevented definitive results from being drawn; however, results did confirm shift comfort criteria previously established by the machine manufacturer. Success of the Phase I effort was sufficient to warrant a more in-depth study. In Phase II a complete VPG environment for wheel loader operation on the IDS was developed and qualitatively evaluated. This VPG environment included a visual model of a mine pit, developed for Caterpillar, Inc. by engineers at its National Center for Supercomputing Applications office, combined with the immersive motion capability of the Iowa Driving Simulator. A real-time dynamics model of a generic wheel loader along with a menu driven interface to the data set used to simulate a particular wheel loader were developed at Center for Computer Aided Design. This combination of programs allows changes to the design of a loader to be rapidly evaluated within a virtual proving ground environment or off-line at an engineering workstation. The machine model was then combined with an implement/soil interaction model, also developed at Caterpillar’s National Center for Supercomputing Applications office. The resulting machine model can be evaluated either off-line at a workstation or driven in response to operator input within the Iowa Driving Simulator virtual proving ground environment. A comparison of the offline model’s predictions of machine response to swept-sinewave steering input is shown to compare favorably with measured performance of the actual machine.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 580
Author(s):  
Michał Gołębiewski ◽  
Marta Galant-Gołębiewska ◽  
Remigiusz Jasiński

Protection of the natural environment is a key activity driving development in the transport discipline today. The use of simulators to train civil aviation pilots provides an excellent opportunity to maintain the balance between efficiency and limit the negative impact of transport on the environment. Therefore, we decided to determine the impact of selected simulations of air operations on energy consumption. The aim of the research was to determine the energy consumption of the flight simulator depending on the type of flight operation and configuration used. We also decided to compare the obtained result with the energy consumption of an aircraft of a similar class, performing a similar aviation operation and other means of transport. In order to obtain the results, a research plan was proposed consisting of 12 scenarios differing in the simulated aircraft model, weather conditions and the use of the simulator motion platform. In each of the scenarios, energy consumption was measured, taking into account the individual components of the simulator. The research showed that the use of a flight simulator has a much smaller negative impact on the natural environment than flying in a traditional plane. Use of a motion platform indicated a change in energy consumption of approximately 40% (in general, flight simulator configuration can change energy consumption by up to 50%). The deterioration of weather conditions during the simulation caused an increase in energy consumption of 14% when motion was disabled and 18% when motion was enabled. Energy consumption in the initial stages of pilot training can be reduced by 97% by using flight simulators compared to aircraft training.


2018 ◽  
Vol 122 (1249) ◽  
pp. 487-518 ◽  
Author(s):  
M. Jones

ABSTRACTVirtual engineering tools are not currently employed extensively during the certification and commissioning of flight simulator motion systems. Subjective opinion is regarded as sufficient for most applications, as it provides verification that the motion platform does not cause false cueing. However, the results of this practice are systems that may be far from optimal for their specific purpose. This paper presents a new method for tuning motion systems objectively using a novel tuning process and tools which can be applied throughout the simulators life-cycle. The use of the tuning method is shown for a number of simulated test cases.


1988 ◽  
Vol 25 (7) ◽  
pp. 639-646 ◽  
Author(s):  
Lloyd D. Reid ◽  
Meyer A. Nahon

Author(s):  
PAUL W. CARO

Flight simulator motion has been demonstrated to affect performance in the simulator, but recent transfer of training studies have failed to demonstrate an effect upon in-flight performance. However, these transfer studies examined the effects of motion in experimental designs that did not permit a dependency relationship to be established between the characteristics of the motion simulated and the training objectives or the performance measured. Another investigator has suggested that motion cues which occur in flight can be dichotomized as maneuver and disturbance cues, i.e., as resulting from pilot control action or from external forces. This paper examines each type cue and relates it analytically to training requirements. The need to establish such relationships in simulator design is emphasized. Future transfer studies should examine specific training objectives that can be expected to be effected by motion.


Author(s):  
Carlos F. Rodri´guez ◽  
Nicola´s Ochoa Lleras

This article presents a methodology for the definition of vehicle simulator motion cues based on the biomechanical response of the vestibular organs to motion stimuli. The proposed method begins with an extension of the human motion perception model which includes the simulator kinematics. The goal of this procedure is to define the motion cues so that they reproduce vestibular sensor signals matching those of a reference motion, in terms of the Sensor-State vector. This vector is estimated by using dynamic models of the vestibular organs’ biomechanics. A definition of equivalent motion based on properties of these models is introduced. This definition allows for the proposal of a strategy to imitate the vestibular sensor signals. The methodology has been tested in simulation with a 3-dof planar motion simulator, resulting in satisfactory results. Finally, the potential of the proposed methodology is discussed.


Sign in / Sign up

Export Citation Format

Share Document