Comparative Studies of Dance Communication: Analysis of Phylogeny and Function

2019 ◽  
pp. 177-198 ◽  
Author(s):  
Fred C. Dyer
2017 ◽  
Vol 34 ◽  
Author(s):  
NA ZHOU ◽  
PHILLIP S. MAIRE ◽  
SEAN P. MASTERSON ◽  
MARTHA E. BICKFORD

AbstractComparative studies have greatly contributed to our understanding of the organization and function of visual pathways of the brain, including that of humans. This comparative approach is a particularly useful tactic for studying the pulvinar nucleus, an enigmatic structure which comprises the largest territory of the human thalamus. This review focuses on the regions of the mouse pulvinar that receive input from the superior colliculus, and highlights similarities of the tectorecipient pulvinar identified across species. Open questions are discussed, as well as the potential contributions of the mouse model for endeavors to elucidate the function of the pulvinar nucleus.


2000 ◽  
Vol 28 (4) ◽  
pp. 464-469 ◽  
Author(s):  
D. Coates ◽  
R. Siviter ◽  
R. E. Isaac

Comparison of peptidase gene families in the newly released Drosophila melanogaster and Caenorhabditis elegans genomes highlights important differences in peptidase distributions with relevance to the evolution of both form and function in these two organisms and can help to identify the most appropriate model when using comparative studies relevant to the human condition.


1994 ◽  
Vol 6 (4) ◽  
pp. 421 ◽  
Author(s):  
PD Temple-Smith

Marsupial sperm structure has been the focus of many comparative studies in the last 30 years. Although the basic organization of the marsupial spermatozoon is similar to that of eutherian mammals, spermatozoa from this branch of therian evolution have developed a specific suite of characters which clearly distinguish them from the Eutheria. This review surveys these specializations and examines current knowledge on their respective functions and the forces which shaped their evolution. Nuclear shaping and stability, the asymmetric positioning of the acrosome, and the unusual neck articulation are discussed. Although recent observations have provided evidence of a marsupial equatorial segment and posterior ring, the marsupial equivalent of the eutherian postacrosomal sheath has not been identified. The unusual neck structure of marsupial spermatozoa and the mobile articulation of the connecting piece are discussed in relation to nuclear rotation and the events associated with this process. Increasing flagellar length in some species is associated with extremes in flagellar organization and its effect on sperm motility is discussed.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1335
Author(s):  
Shane Steinert-Threlkeld

While the languages of the world vary greatly, they exhibit systematic patterns, as well. Semantic universals are restrictions on the variation in meaning exhibit cross-linguistically (e.g., that, in all languages, expressions of a certain type can only denote meanings with a certain special property). This paper pursues an efficient communication analysis to explain the presence of semantic universals in a domain of function words: quantifiers. Two experiments measure how well languages do in optimally trading off between competing pressures of simplicity and informativeness. First, we show that artificial languages which more closely resemble natural languages are more optimal. Then, we introduce information-theoretic measures of degrees of semantic universals and show that these are not correlated with optimality in a random sample of artificial languages. These results suggest both that efficient communication shapes semantic typology in both content and function word domains, as well as that semantic universals may not stand in need of independent explanation.


2018 ◽  
Vol 6 (4) ◽  
pp. 97 ◽  
Author(s):  
Anthony Finch ◽  
Jin Kim

Literature from the past two decades has outlined the existence of a trade-off between protein stability and function. This trade-off creates a unique challenge for protein engineers who seek to introduce new functionality to proteins. These engineers must carefully balance the mutation-mediated creation and/or optimization of function with the destabilizing effect of those mutations. Subsequent research has shown that protein stability is positively correlated with “evolvability” or the ability to support mutations which bestow new functionality on the protein. Since the ultimate goal of protein engineering is to create and/or optimize a protein’s function, highly stable proteins are preferred as potential scaffolds for protein engineering. This review focuses on the application potential for thermophilic proteins as scaffolds for protein engineering. The relatively high inherent thermostability of these proteins grants them a great deal of mutational robustness, making them promising scaffolds for various protein engineering applications. Comparative studies on the evolvability of thermophilic and mesophilic proteins have strongly supported the argument that thermophilic proteins are more evolvable than mesophilic proteins. These findings indicate that thermophilic proteins may represent the scaffold of choice for protein engineering in the future.


Sign in / Sign up

Export Citation Format

Share Document