Compressive strength of recycled coarse aggregate pervious concrete containing cement supplementary material

Author(s):  
L.N. Jia ◽  
J. Xia ◽  
M.D. Liu
Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


2020 ◽  
Vol 12 (24) ◽  
pp. 10544
Author(s):  
Chunhong Chen ◽  
Ronggui Liu ◽  
Pinghua Zhu ◽  
Hui Liu ◽  
Xinjie Wang

Carbonation durability is an important subject for recycled coarse aggregate concrete (RAC) applied to structural concrete. Extensive studies were carried out on the carbonation resistance of RAC under general environmental conditions, but limited researches investigated carbonation resistance when exposed to chloride ion corrosion, which is an essential aspect for reinforced concrete materials to be adopted in real-world applications. This paper presents a study on the carbonation durability of two generations of 100% RAC with the effect of chloride ion corrosion. The quality evolution of recycled concrete coarse aggregate (RCA) with the increasing recycling cycles was analyzed, and carbonation depth, compressive strength and the porosity of RAC were measured before and after chloride ion corrosion. The results show that the effect of chloride ion corrosion negatively affected the carbonation resistance of RAC, and the negative effect was more severe with the increasing recycling cycles of RCA. Chloride ion corrosion led to a decrease in compressive strength, while an increase in carbonation depth and the porosity of RAC. The equation of concrete total porosity and carbonation depth was established, which could effectively judge the deterioration of carbonation resistance of RAC.


2014 ◽  
Vol 605 ◽  
pp. 147-150
Author(s):  
Seong Uk Hong ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

This study used the ultrasonic pulse velocity method, one of the non-destructive test methods that does not damage the building for maintenance of to-be-constructed concrete structures using recycled aggregates in order to estimate the compressive strength of high strength concrete structure using recycled coarse aggregate and provide elementary resources for technological establishment of ultrasonic pulse velocity method. 200 test pieces of high strength concrete 40, 50MPa using recycled coarse aggregate were manufactured by replacement rates (0, 30, 50, 100%) and age (1, 7, 28, 180days), and air curing was executed to measure compressive strength and wave velocity. As the result of compressive strength measurement, the one with age of 180day and design strength of 40MPa was 43.69MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 42.82, 41.22, 37.35MPa, and 50MPa was 52.50MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 49.02, 46.66, 45.30MPa, and while it could be seen that the test piece substituted with recycled aggregate was found to have lower strength than the test piece with natural aggregate only, but it still reached the design strength to a degree. The correlation of compressive strength and ultrasonic pulse velocity was found and regression analysis was conducted. The estimation formula for compressive strength of high strength concrete using recycled coarse aggregate was found to be Fc=0.069Vp4.05, R2=0.66


2019 ◽  
Vol 801 ◽  
pp. 391-396
Author(s):  
Janardhan Prashanth ◽  
Harish Narayana ◽  
Ramji Prasad

In this paper comparative study on the compressive strength and permeability of pervious concrete with and without fine aggregate is done. Sand and LLDPE (Linear low density polythene) with varying percentages are used as fine aggregates. Sand is added in percentages of 5%, 10% and 15% of the coarse aggregate in all the mixes. LLDPE powder is added in the percentage of 5%, 10% and 15% of the coarse aggregate in all the mixes. With the addition of fine aggregate the compressive strength of the pervious concrete increases but permeability reduces. The results show that the pervious concrete with LLDPE powder there is a considerable increase in compressive strength as compared to no-fines mix and mix with sand as fine aggregate. The study recommends the use of eco-friendly pervious concrete with LLDPE powder as an alternative to the existing pavements with low volume traffic.


2014 ◽  
Vol 578-579 ◽  
pp. 464-468
Author(s):  
Wen Wu Lan ◽  
Rong Fu Zhong ◽  
Bo Lv ◽  
Jing Yan Gan ◽  
Jing Wei Ying

This study examined the compressive behaviors of concrete with artificial sand that mixed with different content of stone powder (SP). Forty-five cubic specimens were prepared with two strength grades and five SP-content. Including 15 specimens (C35) of recycled coarse aggregate (RA) concrete with artificial sand (RCC35), 15 specimens (C45) of recycled coarse aggregate concrete with artificial sand (RCC45) and 15 specimens (C35) of natural aggregate concrete with artificial sand (NC35). The workability of concrete mixture and the compressive strength of the cubic specimens were tested. The results showed that the slump of concrete mixture decreased with the SP-content increased, and the coagulability and water retentivity of the concrete mixture were improved by using stone powder. The compressive strength of the concrete with artificial sand were increased by incorporating stone powder. The optimal SP-content of RCC35 and NC35 is 20%, while RCC45 is 10%.


Author(s):  
Suwendy Arifin Et.al

Pervious concrete or non-fine concrete is a simple form of lightweight concrete made by eliminating the use of fine aggregates. As a result of not using fine aggregate in pervious concrete, then created a cavity filled with air and water can be passed. This cavity resulted in reduced density of the concrete as well as the reduced amount of area that needs to be covered by cement paste, thereby reducing the compressive strength. To increase the compressive strength of pervious concrete, in this study will utilize waste material. The waste material is the cocnut shell ash and coconut shell to strengthen the coarse aggregate bonds, so it is expected to increase the compressive strength along with the increase in permeability. Thus, in this study will replace part of the coarse aggregate with coconut shell with percentage 0%, 2,5%, 5%, 7,5%, 10% and partially replace cement with coconut shell ash with percentage 0%, 2,5%, 5%, 7,5%


Author(s):  
Asfaw Mekonnen LAKEW ◽  
Mukhallad M. AL-MASHHADANI ◽  
Orhan CANPOLAT

This experimental work evaluated geopolymer concrete containing fly ash and slag by partial replacement of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA) to manufacture environmental-friendly concrete. The proportion of recycled aggregates considered consists of 10%, 20%, 30%, and 40% of the total coarse aggregate amount. Also, a steel fiber ratio of 0.3% was utilized. The mechanical properties and abrasion resistance of fly ash/slag-based geopolymer concrete were then assessed. Majorly, the mechanical strength of the concrete samples decreased by the increase of RCA content. The geopolymer concrete with 40% RCA gave 28.3% lesser compressive strength and 24% lower splitting tensile strength than NCA concrete at one year. Also, the flexural strength of concrete specimens was reduced by 35% (from 5.34MPa to 3.5MPa) with the incorporation of 40% RCA. The incorporation of 30% RCA caused 23% and 22.6% reduction in compressive strength at 56 days and one year, respectively. The flexural and splitting tensile strength of the specimens was not significantly reduced (less than 10%) with the inclusion of a recycled coarse aggregate ratio of up to 30%. Furthermore, the abrasion wear thickness of every concrete sample was less than 1mm. RCA inclusion of 20% produced either insignificant reduction or better strength results compared to reference mixtures. As a result, it was considered that the combination of 0.3% steel fiber and 20% recycled coarse aggregate in fly ash/slag-based geopolymer concrete leads to an eco-friendly concrete mix with acceptable short and long-term engineering properties that would lead to sustainability in concrete production and utilization sector.


Sign in / Sign up

Export Citation Format

Share Document