Evaluation of dynamic performance of structure using real-time hybrid experimental system

Author(s):  
H. Inomo ◽  
T. Horiuchi ◽  
W. Shiraki ◽  
M. Dogaki ◽  
K. Yasuda
2021 ◽  
Author(s):  
Ezz Eldin Ibrahim Mohamed ◽  
Tarek Elnady ◽  
Mohamed Saffaa Hassan ◽  
Saleh

Abstract The present work is directed to develop the dynamic performance of an electro-hydraulic proportional system (EHPS). a mathematical model of (EHPS) is presented using electrohydraulic proportional valve (EHPV) by the aim of Matlab-simulink which facilitate the simulation of the hydraulic behavior inside the main control unit. Experimental work is done and closed loop system is designed using linear variable displacement transducer sensor (LVDT). The controller of the system is an Arduino uno which is considered as the processor of the system. The model is validated by the experimental system. The study also presents a real time tracking control method based on pulse width modulation by controlling the speed of the actuator to achieve position tracking with minimum error.


2020 ◽  
Vol 13 (2) ◽  
pp. 126-140
Author(s):  
Jing Gan ◽  
Xiaobin Fan ◽  
Zeng Song ◽  
Mingyue Zhang ◽  
Bin Zhao

Background: The power performance of an electric vehicle is the basic parameter. Traditional test equipment, such as the expensive chassis dynamometer, not only increases the cost of testing but also makes it impossible to measure all the performance parameters of an electric vehicle. Objective: A set of convenient, efficient and sensitive power measurement system for electric vehicles is developed to obtain the real-time power changes of hub-motor vehicles under various operating conditions, and the dynamic performance parameters of hub-motor vehicles are obtained through the system. Methods: Firstly, a set of on-board power test system is developed by using virtual instrument (Lab- VIEW). This test system can obtain the power changes of hub-motor vehicles under various operating conditions in real-time and save data in real-time. Then, the driving resistance of hub-motor vehicles is analyzed, and the power performance of hub-motor vehicles is studied in depth. The power testing system is proposed to test the input power of both ends of the driving motor, and the chassis dynamometer is combined to test so that the output efficiency of the driving motor can be easily obtained without disassembly. Finally, this method is used to carry out the road test and obtain the vehicle dynamic performance parameters. Results: The real-time current, voltage and power, maximum power, acceleration time and maximum speed of the vehicle can be obtained accurately by using the power test system in the real road experiment. Conclusion: The maximum power required by the two motors reaches about 9KW, and it takes about 20 seconds to reach the maximum speed. The total power required to maintain the maximum speed is about 7.8kw, and the maximum speed is 62km/h. In this article, various patents have been discussed.


Author(s):  
M. W. Dubetz ◽  
J. G. Kuhl ◽  
E. J. Haug

Abstract This paper presents a network based implementation of real-time dynamic simulation methods. An interactive animated graphics environment is presented that permits the engineer to view high quality animated graphics rendering of dynamic performance, to interact with the simulation, and to study the effects of design variations, while the simulation is being carried out. An industry standard network computing system is employed to interface the parallel processor that carries out the dynamic simulation and a high speed graphics processor that creates and displays animated graphics. Multi-windowing and graphics processing methods that are employed to provide visualization and operator control of the simulation are presented. A vehicle dynamics application is used to illustrate the methods developed and to analyze communication bandwidth requirements for implementation with a compute server that is remote from the graphics workstation. It is shown that, while massive data sets are generated on the parallel processor during realtime dynamic simulation and extensive graphics data are generated on the workstation during rendering and display, data communication requirements between the compute server and the workstation are well within the capability of existing networks.


Author(s):  
Lixian Zhang ◽  
Xiao-shan Gao ◽  
Hongbo Li

In this paper, a multi-period turning interpolation algorithm, with real-time look-ahead scheme based on S-curve control method, is presented. In this interpolation algorithm, the geometric precision and the dynamic performance are both satisfied. The machining efficiency is improved by multi-period turning transition, and the precision is also improved by S-curve control method. The computational efficiency of this algorithm meets the need of real-time machining. In addition, there is no accumulated error. At last, this algorithm is verified the validation by the experiments on 3-axis CNC machine.


Author(s):  
Tuomas Saarikoski ◽  
Matti Pietola

This paper presents a Hardware-in-the-Loop (HIL) test setup used for studying the dynamics of an elastomer supported machine bed. The setup uses real elastomer dampers and modeled machine dynamics (process model) connected together via real-time interface. The HIL approach was chosen since the elastomers are a critical part of the system, however, determining their properties for engineering needs can be a challenging task. Accurate elastomer models include many parameters that can only be determined by experimentally, and even then their implementation for real-life applications is not always practical. Using real elastomers supports in the simulation removes uncertainties associated with classic elastomer models, while simulated process makes it possible to test different scenarios fast and with good repeatability. The process model includes a description of the machine body, a rotating unbalanced drive mechanism creating cyclic loading and external excitation forces acting on the machine. The method enables testing of machine bed supports in a realistic operating environment. A test rig was built for housing the elastomers incorporating a hydraulic actuator for producing the process movement. The hydraulic circuit was designed for good dynamic performance with predictive control to minimize delays in the real-time interface. It was found that the HIL-setup can provide fast and accurate information about the plant model behavior in different operating scenarios using the elastomer supports.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 260 ◽  
Author(s):  
Vijay Kumar Singh ◽  
Ravi Nath Tripathi ◽  
Tsuyoshi Hanamoto

Finite set-model predictive control (FS-MPC) is used for power converters and drives having unique advantages as compared to the conventional control strategies. However, the computational burden of the FS-MPC is a primary concern for real-time implementation. Field programmable gate array (FPGA) is an alternative and exciting solution for real-time implementation because of the parallel processing capability, as well as, discrete nature of the hardware platform. Nevertheless, FPGA is capable of handling the computational requirements for the FS-MPC implementation, however, the system development involves multiple steps that lead to the time-consuming debugging process. Moreover, specific hardware coding skill makes it more complex corresponding to an increase in system complexity that leads to a tedious task for system development. This paper presents an FPGA-based experimental implementation of FS-MPC using the system modeling approach. Furthermore, a comparative analysis of FS-MPC in stationary αβ and rotating dq frame is considered for simulation as well as experimental result. The FS-MPC for a three-phase voltage source inverter (VSI) system is developed in a realistic digital simulator integrated with MATLAB-Simulink. The simulated controller model is further used for experimental system implementation and validation using Xilinx FPGA: Zedboard Zynq Evaluation and Development Kit. The digital simulator termed as Xilinx system generator (XSG) provided by Xilinx is used for modeling-based FPGA design.


2012 ◽  
Vol 263-266 ◽  
pp. 748-755 ◽  
Author(s):  
Xiao Feng He ◽  
Long Jun Luo ◽  
Xiang Lin Liu ◽  
Xiao Hui Luo

Safety valves play very important role in protecting the safety of hydraulic support in coal mine. However, its development is greatly limited by the corresponding test bench for the dynamic experiment. In this paper, an experimental system for testing the dynamic performance of the safety valve with rated pressure up to 50MPa and rated flow rate up to 2000L/min, is introduced. Based on AMEsim software, modeling and simulation on the designed system is carried out. Some parameters of the system are also analyzed and their influences to the tested valve’s dynamic performance are obtained by simulation. It is found that the designed system, which adopting the combination of a piston and a plunger cylindersas well as accumulators, can fulfill the demands of the relevant standard. Among all the investigated factors, both the volume and pre-charged gas pressure of the accumulators have optimum values matching with the other parameters of the system. The stroke of the plunger cylinder, the rated flow rates of the cartridge valve and its pilot control valve, are required to be higher than a certain value to avoid negative effects on the dynamic performance of the tested valve. The research presented in this paper is helpful to the design of the test system.


1997 ◽  
Vol 33 (4) ◽  
pp. 1055-1060 ◽  
Author(s):  
Wei-Jen Lee ◽  
Jae-Hyeon Gim ◽  
Mo-Shing Chen ◽  
Shih-Ping Wang ◽  
Ren-Jun Li

Sign in / Sign up

Export Citation Format

Share Document