scholarly journals Introducing dynamic asphalt modulus to the design of flexible aircraft pavement structures

2021 ◽  
pp. 195-209
Author(s):  
H. Weisser ◽  
G. White
2021 ◽  
Author(s):  
David F. Castillo Zuñiga ◽  
Alain Giacobini Souza ◽  
Roberto G. da Silva ◽  
Luiz Carlos Sandoval Góes

2018 ◽  
pp. 128-145
Author(s):  
Volodynyr Mozghovyi ◽  
◽  
Viktor Gaidaichuk ◽  
Yurii Zaiets ◽  
Liudmyla Shevchuk ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Hatem Alhazmi ◽  
Syyed Adnan Raheel Shah ◽  
Muhammad Aamir Basheer

Rigid pavement structures are one of the costly components of the infrastructure development process. It consumes a huge quantity of ingredients necessary for concrete development. Hence, a newly introduced concept of circular economy in combination with waste management was introduced to solve this problem. In this study, three waste products (rice husk ash (RHA), wood sawdust (WSD), and processes waste tea (PWT)) was utilized to develop the concrete for rigid pavement structures by replacing the sand, i.e., a filler material at different percentages. During the testing procedure of compressive (CS), tensile (TS), and flexural strength (FS) properties, RHA and WSD at 5% replacement were found to be a good replacement of sand to develop required concrete. This study will help in the production of eco-friendly rigid pavement structures and a pathway of life cycle assessment in the future.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 563
Author(s):  
Łukasz Skotnicki ◽  
Jarosław Kuźniewski ◽  
Antoni Szydło

The reduction in natural resources and aspects of environmental protection necessitate alternative uses of waste materials in the area of construction. Recycling is also observed in road construction where mineral–cement emulsion (MCE) mixtures are applied. The MCE mix is a conglomerate that can be used to make the base layer in road pavement structures. MCE mixes contain reclaimed asphalt from old, degraded road surfaces, aggregate improving the gradation, asphalt emulsion, and cement as a binder. The use of these ingredients, especially cement, can cause shrinkage and cracks in road layers. The article presents selected issues related to the problem of cracking in MCE mixtures. The authors of the study focused on reducing the cracking phenomenon in MCE mixes by using an innovative cement binder with recycled materials. The innovative cement binder based on dusty by-products from cement plants also contributes to the optimization of the recycling process in road surfaces. The research was carried out in the field of stiffness, fatigue life, crack resistance, and shrinkage analysis of mineral–cement emulsion mixes. It was found that it was possible to reduce the stiffness and the cracking in MCE mixes. The use of innovative binders will positively affect the durability of road pavements.


Aviation ◽  
2014 ◽  
Vol 18 (2) ◽  
pp. 72-79
Author(s):  
Ervina Ahyudanari ◽  
Nasir Shafiq ◽  
Ibrahim Kamaruddin

Preserving airport pavement means guarantying the safety operation of aircraft movements. There are four aspects that cause progressive pavement deterioration, i.e. the construction design and process, selected material, and maintenance management. One of the traffic aspects, jet engine exhaust, has not been discovered yet. The load pattern of the jet exhaust follows the schedule of aircraft traffic. The assumption held in this research is that the thermal load during aircraft movement may generate a high temperature, which is induced into pavement layers. The objective of this research is to determine the temperature gradient in the pavement, caused by the jet exhaust. This paper discusses the process of determining the temperature gradient in four stages, i.e. by carrying out the gap analysis, evaluation of pavement structures, determination of the load path and the magnitude, and defining the temperature gradient. The temperature gradient in the pavement layer is determined through the development of a model of cyclic loading. The thermal cyclic load follows the aircraft schedule pattern. The pavement temperature receives the thermal cyclic load of the sinusoid of solar radiation. The results indicate that the temperature of the pavement is increased and pavement temperature rises by 35 °C. However, after 60 seconds the remaining temperature of the pavement layer decreases to the initial temperature, which is caused by solar radiation.


2003 ◽  
Vol 1855 (1) ◽  
pp. 176-182 ◽  
Author(s):  
Weng On Tam ◽  
Harold Von Quintus

Traffic data are a key element for the design and analysis of pavement structures. Automatic vehicle-classification and weigh-in-motion (WIM) data are collected by most state highway agencies for various purposes that include pavement design. Equivalent single-axle loads have had widespread use for pavement design. However, procedures being developed under NCHRP require the use of axle-load spectra. The Long-Term Pavement Performance database contains a wealth of traffic data and was selected to develop traffic defaults in support of NCHRP 1-37A as well as other mechanistic-empirical design procedures. Automated vehicle-classification data were used to develop defaults that account for the distribution of truck volumes by class. Analyses also were conducted to determine direction and lane-distribution factors. WIM data were used to develop defaults to account for the axle-weight distributions and number of axles per vehicle for each truck type. The results of these analyses led to the establishment of traffic defaults for use in mechanistic-empirical design procedures.


Sign in / Sign up

Export Citation Format

Share Document