An experiment on turbulent intensities and their contribution to the turbulent kinetic energy in an open channel bend

2016 ◽  
Author(s):  
A Farhadi ◽  
C Sindelar ◽  
M Tritthart ◽  
M Glas ◽  
H Habersack
2009 ◽  
Vol 630 ◽  
pp. 413-442 ◽  
Author(s):  
W. VAN BALEN ◽  
W. S. J. UIJTTEWAAL ◽  
K. BLANCKAERT

After validation with experimental data, large-eddy simulation (LES) is used to study in detail the open-channel flow through a curved flume. Based on the LES results, the present paper addresses four issues. Firstly, features of the complex bicellular pattern of the secondary flow, occurring in curved open-channel flows, and its origin are investigated. Secondly, the turbulence characteristics of the flow are studied in detail, incorporating the anisotropy of the turbulence stresses, as well as the distribution of the kinetic energy and the turbulent kinetic energy. Moreover, the implications of the pattern of the production of turbulent kinetic energy is discussed within this context. Thirdly, the distribution of the wall shear stresses at the bottom and sidewalls is computed. Fourthly, the effects of changes in the subgrid-scale model and the boundary conditions are investigated. It turns out that the counter-rotating secondary flow cell near the outer bank is a result of the complex interaction between the spatial distribution of turbulence stresses and centrifugal effects. Moreover, it is found that this outer bank cell forms a region of a local increase of turbulent kinetic energy and of its production. Furthermore, it is shown that the bed shear stresses are amplified in the bend. The distribution of the wall shear stresses is deformed throughout the bend due to curvature. Finally, it is shown that changes in the subgrid-scale model, as well as changes in the boundary conditions, have no strong effect on the results.


2021 ◽  
Vol 3 (2) ◽  
pp. 1-4
Author(s):  
OP Folorunso ◽  

Turbulent kinetic energy (TKE) and budget are indispensable hydraulic parameters to determine turbulent scales and processes resulting from various and different natural hydraulic features in open channels. This paper focuses on experimental investigation of turbulent kinetic energy and budget in a heterogeneous open channel flow with gravel and vegetated beds. Results indicate the turbulent kinetic energy (TKE) value over gravel region of the heterogeneous bed remains approximately constant with flow depth. The highest turbulent kinetic energy was calculated for flexible vegetation arrangement compared to the rigid vegetation. The estimation of the turbulent kinetic energy budget shows the higher values of turbulence production recorded over the flexible vegetated bed, consequently, the dissipation rate exhibits faster decay of turbulence kinetic energy over the vegetated bed in comparison to the gravel bed.


2020 ◽  
Vol 98 (5) ◽  
pp. 1191-1201
Author(s):  
Fanny Springer ◽  
Lucie Carrera ◽  
Gislain Lipeme Kouyi ◽  
Alejandro Claro‐Barreto ◽  
Pierre Buffiere

2017 ◽  
Vol 827 ◽  
pp. 285-321 ◽  
Author(s):  
Wolfgang Schanderl ◽  
Ulrich Jenssen ◽  
Claudia Strobl ◽  
Michael Manhart

We investigate the flow and turbulence structure in front of a cylinder mounted on a flat plate by a combined study using highly resolved large-eddy simulation and particle image velocimetry. The Reynolds number based on the bulk velocity and cylinder diameter is $Re_{D}=39\,000$. As the cylinder is placed in an open channel, we take special care to simulate open-channel flow as the inflow condition, including secondary flows that match the inflow in the experiment. Due to the high numerical resolution, subgrid contributions to the Reynolds stresses are negligible and the modelled dissipation plays a minor role in major parts of the flow field. The accordance of the experimental and numerical results is good. The shear in the approach flow creates a vertical pressure gradient, inducing a downflow in the cylinder front. This downflow, when deflected in the upstream direction at the bottom plate, gives rise to a so-called horseshoe vortex system. The most upstream point of flow reversal at the wall is found to be a stagnation point which appears as a sink instead of a separation point in the symmetry plane in front of the cylinder. The wall shear stress is largest between the main (horseshoe) vortex and the cylinder, and seems to be mainly governed by the strong downflow in front of the cylinder as turbulent stresses are small in this region. Due to a strong acceleration along the streamlines, a region of relatively small turbulent kinetic energy is found between the horseshoe vortex and the cylinder. When passing under the horseshoe vortex, the upstream-directed jet formed by the deflected downflow undergoes a deceleration which gives rise to a strong production of turbulent kinetic energy. We find that pressure transport of turbulent kinetic energy is important for the initiation of the large production rates by increasing the turbulence level in the upstream jet near the wall. The distribution of the dissipation of turbulent kinetic energy is similar to that of the turbulent kinetic energy. Large values of dissipation occur around the centre of the horseshoe vortex and near the wall in the region where the jet decelerates. While the small scales are nearly isotropic in the horseshoe vortex centre, they are anistotropic near the wall. This can be explained by a vertical flapping of the upstream-directed jet. The distribution and level of dissipation, turbulent and pressure transport of turbulent kinetic energy are of crucial interest to turbulence modelling in the Reynolds-averaged context. To the best of our knowledge, this is the first time that these terms have been documented in this kind of flow.


2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Mohammad Allouche ◽  
Gabriel G. Katul ◽  
Jose D. Fuentes ◽  
Elie Bou-Zeid

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 421
Author(s):  
Alexander Potekaev ◽  
Liudmila Shamanaeva ◽  
Valentina Kulagina

Spatiotemporal dynamics of the atmospheric kinetic energy and its components caused by the ordered and turbulent motions of air masses are estimated from minisodar measurements of three velocity vector components and their variances within the lowest 5–200 m layer of the atmosphere, with a particular emphasis on the turbulent kinetic energy. The layered structure of the total atmospheric kinetic energy has been established. From the diurnal hourly dynamics of the altitude profiles of the turbulent kinetic energy (TKE) retrieved from minisodar data, four layers are established by the character of the altitude TKE dependence, namely, the near-ground layer, the surface layer, the layer with a linear TKE increase, and the transitive layer above. In the first layer, the most significant changes of the TKE were observed in the evening hours. In the second layer, no significant changes in the TKE values were observed. A linear increase in the TKE values with altitude was observed in the third layer. In the fourth layer, the TKE slightly increased with altitude and exhibited variations during the entire observation period. The altitudes of the upper boundaries of these layers depended on the time of day. The MKE values were much less than the corresponding TKE values, they did not exceed 50 m2/s2. From two to four MKE layers were distinguished based on the character of its altitude dependence. The two-layer structures were observed in the evening and at night (under conditions of the stable atmospheric boundary layer). In the morning and daytime, the four-layer MKE structures with intermediate layers of linear increase and subsequent decrease in the MKE values were observed. Our estimates demonstrated that the TKE contribution to the total atmospheric kinetic energy considerably (by a factor of 2.5–3) exceeded the corresponding MKE contribution.


Sign in / Sign up

Export Citation Format

Share Document