scholarly journals Molecular Mechanisms of Polyamines-Induced Abiotic Stress Tolerance in Plants

Author(s):  
Ágnes Szepesi
Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 782
Author(s):  
Joon-Yung Cha ◽  
Sang-Ho Kang ◽  
Myung Geun Ji ◽  
Gyeong-Im Shin ◽  
Song Yi Jeong ◽  
...  

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


Agronomy ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 31 ◽  
Author(s):  
Mirza Hasanuzzaman ◽  
M. Bhuyan ◽  
Kamrun Nahar ◽  
Md. Hossain ◽  
Jubayer Mahmud ◽  
...  

Among the plant nutrients, potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of the plant structure but it also has a regulatory function in several biochemical processes related to protein synthesis, carbohydrate metabolism, and enzyme activation. Several physiological processes depend on K, such as stomatal regulation and photosynthesis. In recent decades, K was found to provide abiotic stress tolerance. Under salt stress, K helps to maintain ion homeostasis and to regulate the osmotic balance. Under drought stress conditions, K regulates stomatal opening and helps plants adapt to water deficits. Many reports support the notion that K enhances antioxidant defense in plants and therefore protects them from oxidative stress under various environmental adversities. In addition, this element provides some cellular signaling alone or in association with other signaling molecules and phytohormones. Although considerable progress has been made in understanding K-induced abiotic stress tolerance in plants, the exact molecular mechanisms of these protections are still under investigation. In this review, we summarized the recent literature on the biological functions of K, its uptake, its translocation, and its role in plant abiotic stress tolerance.


Author(s):  
Mirza Hasanuzzaman ◽  
M.H.M. Borhannuddin Bhuyan ◽  
Kamrun Nahar ◽  
Md. Shahadat Hossain ◽  
Jubayer Al Mahmud ◽  
...  

Among the plant nutrients potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of plant structure but also plays regulatory function in several biochemical processes related to protein synthesis, carbohydrate metabolism, enzyme activation. There are several physiological processes like stomatal regulation and photosynthesis are dependent on K. In the recent decades K was found to provide abiotic stress tolerance. Under salt stress, K helps in maintaining ion homeostasis and regulation of osmotic balance. Under drought stress condition K regulates the stomatal opening and makes the plants adaptive to water deficit. Many reports provided the notion that K enhances the antioxidant defense in plants and therefore, protects the plants from oxidative stress under various environmental adversities. Also, it provides some cellular signaling alone or in association with other signaling molecules and phytohormones. Although a considerable progress in understanding K-induced abiotic stress tolerance in plants has been achieved the exact molecular mechanisms of such protections are still under research. In this review, we summarized the recent literature on the biological functions of K, its uptake, and translocation and its role in plant abiotic stress tolerance.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 193
Author(s):  
Hongwei Cui ◽  
Yang Wang ◽  
Tingqiao Yu ◽  
Shaoliang Chen ◽  
Yuzhen Chen ◽  
...  

Ammopiptanthus mongolicus, a xerophyte plant that belongs to the family Leguminosae, adapts to extremely arid, hot, and cold environments, making it an excellent woody plant to study the molecular mechanisms underlying abiotic stress tolerance. Three dehydrin genes, AmDHN132, AmDHN154, and AmDHN200 were cloned from abiotic stress treated A. mongolicus seedlings. Cytomembrane-located AmDHN200, nucleus-located AmDHN154, and cytoplasm and nucleus-located AmDHN132 were characterized by constitutive overexpression of their genes in Arabidopsis thaliana. Overexpression of AmDHN132, AmDHN154, and AmDHN200 in transgenic Arabidopsis improved salt, osmotic, and cold tolerances, with AmDHN132 having the largest effect, whereas the growth of transformed plants is not negatively affected. These results indicate that AmDHNs contribute to the abiotic stress tolerance of A. mongolicus and that AmDHN genes function differently in response to abiotic stresses. Furthermore, they have the potential to be used in the genetic engineering of stress tolerance in higher plants.


2012 ◽  
Vol 16 (4) ◽  
pp. 188-199 ◽  
Author(s):  
Muhammad Saeed ◽  
Abdel hafiz Adam Dahab ◽  
Guo Wangzhen ◽  
Zhang Tianzhen

Genome ◽  
2019 ◽  
Vol 62 (10) ◽  
pp. 689-703
Author(s):  
Zhaoyu Wang ◽  
Runxia Feng ◽  
Xue Zhang ◽  
Zhi Su ◽  
Jianrong Wei ◽  
...  

Sea buckthorn (Hippophae rhamnoides L.) is a plant with economic and ecological value. It is uniquely capable of growing well under salt and drought stress. WRKY transcription factors play important roles in the ability of plants to resist stress. In this study, 48 HrWRKY genes were identified based on RNA sequencing of H. rhamnoides. Evaluation of expression pattern of HrWRKY1, HrWRKY17, HrWRKY18, HrWRKY21, HrWRKY33-2, HrWRKY40-2, HrWRKY41, and HrWRKY71 suggested that they were involved in abiotic stress. Interestingly, HrWRKY21, one of eight HrWRKY genes, was a positive regulator of abiotic stress tolerance in H. rhamnoides. In addition, most morphological attributes of roots in transgenic Nicotiana tabacum lines (overexpressing HrWRKY21) were also markedly increased compared with the wild-type (WT), including total lengths, specific root lengths, and surface areas. Stress tolerance of transgenic lines was also correlated with higher antioxidant activity (SOD and POD), lower percentage of relative conductivity (REC), and lower activity of malondialdehyde (MDA) under stress conditions. These findings represent a foundation of knowledge about the molecular mechanisms driving resistance to adverse conditions in plants; they are a promising step towards development of tree cultivars with improved tolerance to abiotic stress.


2018 ◽  
Vol 20 (1) ◽  
pp. 89 ◽  
Author(s):  
Changying Liu ◽  
Yazhen Xu ◽  
Yang Feng ◽  
Dingpei Long ◽  
Boning Cao ◽  
...  

Heterotrimeric guanine-nucleotide-binding proteins (G-proteins) play key roles in responses to various abiotic stress responses and tolerance in plants. However, the detailed mechanisms behind these roles remain unclear. Mulberry (Morus alba L.) can adapt to adverse abiotic stress conditions; however, little is known regarding the associated molecular mechanisms. In this study, mulberry G-protein genes, MaGα, MaGβ, MaGγ1, and MaGγ2, were independently transformed into tobacco, and the transgenic plants were used for resistance identification experiments. The ectopic expression of MaGα in tobacco decreased the tolerance to drought and salt stresses, while the overexpression of MaGβ, MaGγ1, and MaGγ2 increased the tolerance. Further analysis showed that mulberry G-proteins may regulate drought and salt tolerances by modulating reactive oxygen species’ detoxification. This study revealed the roles of each mulberry G-protein subunit in abiotic stress tolerance and advances our knowledge of the molecular mechanisms underlying G-proteins’ regulation of plant abiotic stress tolerance.


2018 ◽  
Vol 34 (2) ◽  
pp. 259-265 ◽  
Author(s):  
Hemant B Kardile ◽  
◽  
Vikrant ◽  
Nirmal Kant Sharma ◽  
Ankita Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document