Physiological Perspectives on Improving Crop Adaptation to Drought—Justification for a Systemic Component-Based Approach

Author(s):  
W Berry ◽  
R Ortiz ◽  
O Ito ◽  
J Crouch ◽  
R Serraj ◽  
...  
2019 ◽  
Vol 12 (1) ◽  
pp. 27-29
Author(s):  
Rod J. Snowdon ◽  
Sarah Schiessl

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 708
Author(s):  
Phanthasin Khanthavong ◽  
Shin Yabuta ◽  
Hidetoshi Asai ◽  
Md. Amzad Hossain ◽  
Isao Akagi ◽  
...  

Flooding and drought are major causes of reductions in crop productivity. Root distribution indicates crop adaptation to water stress. Therefore, we aimed to identify crop roots response based on root distribution under various soil conditions. The root distribution of four crops—maize, millet, sorghum, and rice—was evaluated under continuous soil waterlogging (CSW), moderate soil moisture (MSM), and gradual soil drying (GSD) conditions. Roots extended largely to the shallow soil layer in CSW and grew longer to the deeper soil layer in GSD in maize and sorghum. GSD tended to promote the root and shoot biomass across soil moisture status regardless of the crop species. The change of specific root density in rice and millet was small compared with maize and sorghum between different soil moisture statuses. Crop response in shoot and root biomass to various soil moisture status was highest in maize and lowest in rice among the tested crops as per the regression coefficient. Thus, we describe different root distributions associated with crop plasticity, which signify root spread changes, depending on soil water conditions in different crop genotypes as well as root distributions that vary depending on crop adaptation from anaerobic to aerobic conditions.


2004 ◽  
Vol 1 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Hao Gang-Ping ◽  
Wu Zhong-Yi ◽  
Chen Mao-Sheng ◽  
Cao Ming-Qing ◽  
Dominique Brunel ◽  
...  

AbstractThe levels of drought tolerance and nucleotide polymorphism at the CBF4 locus were examined in a world-wide sample of 17 core accessions of Arabidopsis thaliana. The results showed that different accessions exhibited considerable differences in adaptation to drought stress. Compared with Columbia accession, the frequency of nucleotide polymorphism at the CBF4 locus of 25av, 203av and 244av accessions, including single nucleotide polymorphism (SNP) and insertion/deletion (Indel), was high, on average 1 SNP per 35.8 bp and 1 Indel per 143 bp. No significance in all regions of Tajima's D test indicated that the neutral mutation hypothesis could explain the nucleotide polymorphism in this CBF4 gene region. The higher polymorphism was the result of purification selection. Nucleotide polymorphism in the non-coding region was three times higher than in the coding region. This might indicate a recent relaxation of selection pressures on the non-coding region of CBF4 gene. In the coding region of CBF4, SNP frequency was 1 SNP per 96.4 bp and one non-synonymous mutation was detected from 25av, 203av and 244av accessions: the amino acid variation gly↔val at position 205, caused by the nucleotide variation G↔T at position 1034 (corresponding to the nucleotide at position 19 696 of GenBank accession no. AB015478 as 1). Furthermore, four differential SNPs were discovered in haplotype 6 constituted by 203av, one of them located in the 3′ non-coding region (A↔C at position 1106) and the others in the 5′ non-coding region (A↔G, A↔C and G↔A at positions 27, 129 and 171, respectively). The drought tolerance assay indicated that accession 203av was the best at tolerating water deficiency. We propose that haplotype 6 is consistent with its drought tolerance.


Crop Science ◽  
2015 ◽  
Vol 55 (2) ◽  
pp. 477-492 ◽  
Author(s):  
M. Andrea Acuña-Galindo ◽  
R. Esten Mason ◽  
Nithya K. Subramanian ◽  
Dirk B. Hays

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2557
Author(s):  
Dilara Maslennikova ◽  
Oksana Lastochkina

We evaluated the effect of endobacteria Bacillus subtilis (strain 10–4) as a co-inoculant for promoting plant growth and redox metabolism in two contrasting genotypes of Triticum aestivum L. (wheat): Ekada70 (drought tolerant (DT)) and Salavat Yulaev (drought susceptible (DS)) in early stages of adaptation to drought (12% PEG–6000). Results revealed that drought reduced growth and dramatically augmented oxidative stress markers, i.e., hydrogen peroxide (H2O2) and lipid peroxidation (MDA). Furthermore, the depletion of ascorbate (AsA) and glutathione (GSH), accompanied by a significant activation of ascorbate peroxidase (APX) and glutathione reductase (GR), in both stressed wheat cultivars (which was more pronounced in DS genotype) was found. B. subtilis had a protective effect on growth and antioxidant status, wherein the stabilization of AsA and GSH levels was revealed. This was accompanied by a decrease of drought-caused APX and GR activation in DS plants, while in DT plants additional antioxidant accumulation and GR activation were observed. H2O2 and MDA were considerably reduced in both drought-stressed wheat genotypes because of the application of B. subtilis. Thus, the findings suggest the key roles in B. subtilis-mediated drought tolerance in DS cv. Salavat Yulaev and DT cv. Ekada70 played are AsA and GSH, respectively; which, in both cases, resulted in reduced cell oxidative damage and improved growth in seedlings under drought.


Bankarstvo ◽  
2021 ◽  
Vol 50 (2) ◽  
pp. 88-100
Author(s):  
Miloš Božović

This paper investigates the link between default rates by loan types and the systemic credit risk component. This link is described by a linear model that combines systemic and idiosyncratic contributions. The systemic component is a latent factor that depends directly on the aggregate loan default rate, while the idiosyncratic component drives specific variations of default rates across loan types. By transforming observable risk measures, the model can be econometrically represented as a mixed-effects model, where the systemic and idiosyncratic components represent, respectively, the slope and the intercept that are specific for each loan type individually. The proposed model is illustrated on a panel of defaulted loans of the Association of Serbian Banks. The obtained results show the model's very high power in explaining average default rates for all loan types. Thus, the aggregate default rate plays the role of a unique systemic component that mimics the influence of fundamental macroeconomic risk factors easily, without the necessity to model this relationship explicitly.


Sign in / Sign up

Export Citation Format

Share Document