New Developments in Membrane-Based Processes for Industrial Applications

Author(s):  
Peter Cartwright
2002 ◽  
Vol 105 (2) ◽  
pp. 127-133 ◽  
Author(s):  
D Ohms ◽  
M Kohlhase ◽  
G Benczúr-Ürmössy ◽  
G Schädlich

2010 ◽  
Vol 433 ◽  
pp. 211-217 ◽  
Author(s):  
Shun Ping Li ◽  
Mathilde Chabin ◽  
Andrew Heath

In this paper, the authors presented the material models and numerical algorithms adopted in PAMSTAMP 2G for superplastic forming simulation. The improvements in strain rate control, automatic stop criteria, velocity scaling and shell element formulation to include normal stress can improve the accuracy and efficiency of superplastic forming simulation.


Author(s):  
Arshpreet Bhatwa ◽  
Weijun Wang ◽  
Yousef I. Hassan ◽  
Nadine Abraham ◽  
Xiu-Zhen Li ◽  
...  

Recombinant proteins are becoming increasingly important for industrial applications, where Escherichia coli is the most widely used bacterial host for their production. However, the formation of inclusion bodies is a frequently encountered challenge for producing soluble and functional recombinant proteins. To overcome this hurdle, different strategies have been developed through adjusting growth conditions, engineering host strains of E. coli, altering expression vectors, and modifying the proteins of interest. These approaches will be comprehensively highlighted with some of the new developments in this review. Additionally, the unique features of protein inclusion bodies, the mechanism and influencing factors of their formation, and their potential advantages will also be discussed.


Author(s):  
C. F. Oster

Although ultra-thin sectioning techniques are widely used in the biological sciences, their applications are somewhat less popular but very useful in industrial applications. This presentation will review several specific applications where ultra-thin sectioning techniques have proven invaluable.The preparation of samples for sectioning usually involves embedding in an epoxy resin. Araldite 6005 Resin and Hardener are mixed so that the hardness of the embedding medium matches that of the sample to reduce any distortion of the sample during the sectioning process. No dehydration series are needed to prepare our usual samples for embedding, but some types require hardening and staining steps. The embedded samples are sectioned with either a prototype of a Porter-Blum Microtome or an LKB Ultrotome III. Both instruments are equipped with diamond knives.In the study of photographic film, the distribution of the developed silver particles through the layer is important to the image tone and/or scattering power. Also, the morphology of the developed silver is an important factor, and cross sections will show this structure.


Author(s):  
P.A. Crozier ◽  
M. Pan

Heterogeneous catalysts can be of varying complexity ranging from single or double phase systems to complicated mixtures of metals and oxides with additives to help promote chemical reactions, extend the life of the catalysts, prevent poisoning etc. Although catalysis occurs on the surface of most systems, detailed descriptions of the microstructure and chemistry of catalysts can be helpful for developing an understanding of the mechanism by which a catalyst facilitates a reaction. Recent years have seen continued development and improvement of various TEM, STEM and AEM techniques for yielding information on the structure and chemistry of catalysts on the nanometer scale. Here we review some quantitative approaches to catalyst characterization that have resulted from new developments in instrumentation.HREM has been used to examine structural features of catalysts often by employing profile imaging techniques to study atomic details on the surface. Digital recording techniques employing slow-scan CCD cameras have facilitated the use of low-dose imaging in zeolite structure analysis and electron crystallography. Fig. la shows a low-dose image from SSZ-33 zeolite revealing the presence of a stacking fault.


Author(s):  
W.M. Stobbs

I do not have access to the abstracts of the first meeting of EMSA but at this, the 50th Anniversary meeting of the Electron Microscopy Society of America, I have an excuse to consider the historical origins of the approaches we take to the use of electron microscopy for the characterisation of materials. I have myself been actively involved in the use of TEM for the characterisation of heterogeneities for little more than half of that period. My own view is that it was between the 3rd International Meeting at London, and the 1956 Stockholm meeting, the first of the European series , that the foundations of the approaches we now take to the characterisation of a material using the TEM were laid down. (This was 10 years before I took dynamical theory to be etched in stone.) It was at the 1956 meeting that Menter showed lattice resolution images of sodium faujasite and Hirsch, Home and Whelan showed images of dislocations in the XlVth session on “metallography and other industrial applications”. I have always incidentally been delighted by the way the latter authors misinterpreted astonishingly clear thickness fringes in a beaten (”) foil of Al as being contrast due to “large strains”, an error which they corrected with admirable rapidity as the theory developed. At the London meeting the research described covered a broad range of approaches, including many that are only now being rediscovered as worth further effort: however such is the power of “the image” to persuade that the above two papers set trends which influence, perhaps too strongly, the approaches we take now. Menter was clear that the way the planes in his image tended to be curved was associated with the imaging conditions rather than with lattice strains, and yet it now seems to be common practice to assume that the dots in an “atomic resolution image” can faithfully represent the variations in atomic spacing at a localised defect. Even when the more reasonable approach is taken of matching the image details with a computed simulation for an assumed model, the non-uniqueness of the interpreted fit seems to be rather rarely appreciated. Hirsch et al., on the other hand, made a point of using their images to get numerical data on characteristics of the specimen they examined, such as its dislocation density, which would not be expected to be influenced by uncertainties in the contrast. Nonetheless the trends were set with microscope manufacturers producing higher and higher resolution microscopes, while the blind faith of the users in the image produced as being a near directly interpretable representation of reality seems to have increased rather than been generally questioned. But if we want to test structural models we need numbers and it is the analogue to digital conversion of the information in the image which is required.


Sign in / Sign up

Export Citation Format

Share Document