A study of design loads for fatigue strength utilizing direct calculation under real operational conditions

2011 ◽  
pp. 317-323 ◽  
Author(s):  
Masayoshi Oka ◽  
Tomoki Takami ◽  
Yoshitaka Ogawa ◽  
Ken Takagi
Author(s):  
Zhiyuan Li ◽  
Wengang Mao ◽  
Jonas W. Ringsberg

Today, it is common practice to carry out fatigue assessments of ship structures using direct calculation procedures. A direct calculation analysis of a ship’s fatigue strength involves hydrodynamic analysis, stress response evaluation followed by fatigue damage calculation. Many numerical codes are available for these types of analyses. They could yield different values in a fatigue life prediction because of the different degrees of complexity in the computation of the ship’s response. For example, hydrodynamic loads can be calculated using the strip theory or the panel method. The stress response to these loads can be computed using a beam theory or more advanced analyses, such as global and/or local finite element analyses. In a direct fatigue analysis for ship design, spectral methods have been dominating but there is a growing interest in time-domain fatigue damage calculation procedures. The objective of the current investigation is to compare four commonly used direct calculation methods against measurement data. The comparison is carried out by making a case study on a Panamax container ship on which full-scale measurements have been performed. The computational efforts involved in the application of the current direct calculation methods are compared and their applicability in ship fatigue design is discussed.


1958 ◽  
Vol 62 (574) ◽  
pp. 757-760
Author(s):  
W. T. Koiter

MR. Harpur's interesting and stimulating paper (page 363, May 1958 Journal) is obviously of great importance to all who have to face the problem of fatigue strength of aircraft. These comments all refer to Section 3—Design Loads. Mr. Harpur's conclusions are based on analysis of a typical flight plan of a medium haul civil transport, and are formulated as a proposal for two fail-safe design requirements.


Author(s):  
Jeom Kee Paik ◽  
Sang Eui Lee ◽  
Bong Ju Kim ◽  
Jung Kwan Seo ◽  
Yeon Chul Ha ◽  
...  

The aim of this study is to develop a new probabilistic approach to determine nominal values for tank sloshing loads in structural design of LNG FPSO (liquefied natural gas, floating production, storage, and offloading units). Details of the proposed procedure are presented in a flow chart showing the key subtasks. The applicability of the method is demonstrated using an example of a hypothetical LNG FPSO operating in a natural gas site off a hypothetical oceanic region. It is noted that the proposed method is still under development for determining reliable estimates of extreme sloshing induced impact loads. It is concluded that the developed method is useful for determining the sloshing design loads in ship-shaped offshore LNG installations in combination with virtual metocean data and operational conditions.


2020 ◽  
Vol S-I (2) ◽  
pp. 68-71
Author(s):  
V. Platonov ◽  
◽  
A. Filatov ◽  

This study is an alternative FEM-based fatigue strength calculation for propulsion shafts as per RS Rules. Direct numerical simulation yielded the fields of stresses and strains. Lifetime assessment was based on S-N fatigue model: critical stresses for this model were obtained as per critical-plane method taking into account non-proportional loading of propulsion shafts. It compares two shaft designs: in compliance with RS Rules and with deviation from them.


2020 ◽  
Author(s):  
Alejandro García-Gil ◽  
Miguel Ángel Marazuela ◽  
Miguel Mejías Moreno ◽  
Enric Vázquez-Suñè ◽  
Eduardo Garrido Schneider ◽  
...  

<p>Shallow geothermal systems are the most efficient and clean technology for the air-conditioning of buildings and constitutes an emergent renewable energy resource in the worldwide market. Undisturbed systems are capable of efficiently exchanging heat with the subsurface and transferring it to human infrastructures, providing the basis for the successful decarbonisation of heating and cooling demands of cities. Unmanaged intensive use of groundwater for thermal purposes as a shallow geothermal energy (SGE) resource in urban environments threatens the resources´ renewability and the systems´ performance, due to the thermal interferences created by a biased energy demand throughout the year. To ensure sustainability, scientifically-based criteria are required to prevent potential thermal interferences between geothermal systems. In this work, a management indicator (balanced sustainability index, BSI) applicable to groundwater heat pump systems is defined to assign a quantitative value of sustainability to each system, based on their intrinsic potential to produce thermal interference. The BSI indicator relies on the net heat balance transferred to the terrain throughout the year and the maximum seasonal thermal load associated. To define this indicator, 75 heating-cooling scenarios based in 23 real systems were established to cover all possible different operational conditions. The scenarios were simulated in a standard numerical model, adopted as a reference framework, and thermal impacts were evaluated. Two polynomial regression models were used for the interpolation of thermal impacts, thus allowing the direct calculation of the sustainability indicator developed as a function of heating-cooling ratios and maximum seasonal thermal loads. The BSI indicator could provide authorities and technicians with scientifically-based criteria to establish geothermal monitoring programs, which are critical to maintain the implementation rates and renewability of these systems in the cities.</p>


2012 ◽  
Vol 538-541 ◽  
pp. 2860-2863 ◽  
Author(s):  
Khurram Shehzad ◽  
Hui Long Ren ◽  
Chun Bo Zhen ◽  
Asifa Khurram

This paper presents structural strength assessment of trimaran by global FE-analysis. Global strength analysis using the finite-element method is a powerful tool extensively used to design well-balanced and reliable sea going vessels. This analysis technique is particularly recommended in unconventional and new ship designs. Lloyd’s Register rules (LR Rules) for classification of trimaran are used to compute design loads and load cases. Global FE analysis is performed as per direct calculation procedure of LR Rules. Maximum stress concentration locations or hot spots corresponding to each load case are identified. The stresses induced in trimaran structure for all load cases are less than the maximum allowable stress. Furthermore, some modifications in current design are suggested to reduce the stress concentrations and hence to improve the structural strength.


2014 ◽  
Vol 602-605 ◽  
pp. 385-389 ◽  
Author(s):  
Feng Lei Han ◽  
Chun Hui Wang ◽  
An Kang Hu ◽  
Ya Chong Liu

Fatigue assessments of container ship structures can be processed using various direct calculation approaches or various approaches of classification societies [1,2]. In this investigation, the fatigue strength assessment to the key positions of a 9200TEU container ship has been performed ,subjected to the rules of BV about fatigue strength specification of large container ships, based on design wave method and Miner fatigue cumulative damage theory analysis method. Wave loads have been computed using linear wave load calculation method based on three-dimensional potential flow theory. And the fatigue strength assessment of the typical hot spot structures has also been conducted based on a series of critical single design wave.


Author(s):  
David C. Joy

Personal computers (PCs) are a powerful resource in the EM Laboratory, both as a means of automating the monitoring and control of microscopes, and as a tool for quantifying the interpretation of data. Not only is a PC more versatile than a piece of dedicated data logging equipment, but it is also substantially cheaper. In this tutorial the practical principles of using a PC for these types of activities will be discussed.The PC can form the basis of a system to measure, display, record and store the many parameters which characterize the operational conditions of the EM. In this mode it is operating as a data logger. The necessary first step is to find a suitable source from which to measure each of the items of interest. It is usually possible to do this without having to make permanent corrections or modifications to the EM.


Sign in / Sign up

Export Citation Format

Share Document