Stability study of surrounding rock with parallel weak interlayer

Author(s):  
C Su ◽  
Y Jiang ◽  
X Li
2019 ◽  
Vol 6 (9) ◽  
pp. 190790
Author(s):  
Jing Hu ◽  
Haijia Wen ◽  
Qilong Xie ◽  
Binyang Li ◽  
Qu Mo

The presence of weak interlayers and groundwater are common adverse geological conditions in tunnels. To investigate the modes of failure of rock masses surrounding tunnels owing to weak interlayers and groundwater, model tests and numerical simulations were conducted in this study based on two cases, and a model that considers only the weak interlayer was conducted for comparison. Based on the tests, differences between two models in terms of rock pressure, displacement, cracks and strain were analysed. The results reveal that the presence of groundwater has a significant effect on the space–time distribution of stress, displacement and cracks in the surrounding rock. Furthermore, based on the numerical model, the seepage field was analysed in terms of pore water pressure, permeability and the seepage process to understand the joint action of groundwater and weak interlayer on the failure mechanism of tunnels. The results show that the groundwater and interlayer complement each other to induce the failure mode of the surrounding rock. The water accelerates slip in the interlayer and the development of cracks. Conversely, low strength, muddy weak interlayers serve as the channels of water flow, resulting in deformations and cracks at different locations and different failure modes.


2021 ◽  
Author(s):  
jianjun SHI ◽  
Feng Jicheng ◽  
Peng Rui ◽  
Zhu Quanjie

Abstract The gob-side entry driving is driving in low pressure area, which bears less support pressure and is easy to maintain, so it is widely used. Taking the gob-side entry driving in thick coal seam of Dongtan Coal Mine as an example, the reasonable size of pillar and the section of roadway are numerically simulated by combining numerical with measurement, and the roadway support is designed. According to the distribution of lateral stress in working face, eight pillars of different sizes are designed. By simulating and comparing the stress distribution of surrounding rock and the development range and shape of plastic zone in different positions, the pillar size of gob-side entry driving is optimized to be 4.5m. According to the results of optimization of roadway section, the section of straight wall semi-circular arch roadway is adopted. According to the analysis, the roadway is supported by bolt + steel mesh + anchor cable. By observing the stability of roadway, it provides experience for the stability study of roadway the gob-side entry driving with small pillar in thick seam.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 496
Author(s):  
Shuxue Ding ◽  
Yuan Gao ◽  
Hongwen Jing ◽  
Xinshuai Shi ◽  
Yanjun Qi ◽  
...  

The existence of the weak interlayer in the roadway surrounding rock mass presents a huge threat to the stability of the underground structure and the safety of mining engineering. By the characteristics of strong adaptability, superior anchoring effect and high efficiency of construction, rock bolt has been widely applied in mine reinforcement. However, the influence of the weak interlayer on the compressive performance of the bolted rock mass is still poorly understood due to the challenges in constructing an efficient experimental platform and complex testing processes. Here, we used the self-developed test system to investigate the influence of the thickness, uniaxial compressive strength, and dip angle of the weak interlayer on the compressive behavior of the bolted rock mass with a single free surface. The results show that the weak interlayer has a great weakening effect on the peak strength and elastic modulus of the specimens due to its low mechanical properties, as well as influencing the crack distribution and failure mode of the samples. As the strength of the weak interlayer is lower than 1.27 MPa, the thickness exceeds 20 mm, and the dip angle exceeds 15°, the synergistic bearing effect will be significantly reduced and affect the mechanical performance of the specimens. The evolution of the bolt force and bending moment are greatly impacted by the deformation process which could be divided into distinct stages of destruction, thereby providing an excellent detection method for judging the stability of the surrounding rock of the mine. The discovery of this research promote a better understanding of the impact of the weak interlayer on mining engineering and guide the mine reinforcement in the future.


2013 ◽  
Vol 353-356 ◽  
pp. 1635-1638
Author(s):  
Hui Huang ◽  
Guang Ming Ren

In this paper, we use ANSYS finite element software to establish calculation model of the underground powerhouse and FLAC3D to calculate the model in different excavation stages. The purpose of calculation is to predict the surrounding rock displacement after excavation for the reference and evaluation of surrounding rock anchoring and rock mass strength on the basis of the computed result of primary stress and displacement.


2012 ◽  
Vol 204-208 ◽  
pp. 1347-1355
Author(s):  
Jian Jia ◽  
Shun Hua Zhou ◽  
Xi Ping Yao ◽  
Chen Shen

Jiaohua Square Station of Harbin Metro Line 1 is built by PBA method with the existence of No. 7381 air defense tunnel. In order to control the ground settlement during PBA construction, numerical model is performed to analyse the surrounding rock pressure, plastic zone and structure internal force. The result shows the lower pilot headings have stronger impact on existing tunnel than the upper ones in that the lower ones get the loading effect while the upper ones the unloading effect. The internal force of air defense tunnel and ground displacement can be well controlled by reducing the area of lower pilot headings at the stages of pilot heading excavation, but the final surface settlement is unqualified. The scheme of lower big pilot heading in part with the support of portal frame meets the requirement of surface settlement. The in-situ surface settlement and the vault settlement of defense tunnel are essentially consistent with numerical results.


2014 ◽  
Vol 21 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Ilze Barene ◽  
Irena Daberte ◽  
Sanita Siksna

The aim of the study. The objective of this study was to investigate microscopic, physical and chemical properties of bee bread collected in three regions of Latvia in order to compare the quality and to investigate the possibility of producing granules containing bee bread. Material and methods. Microscopic analysis of bee bread samples was performed. Plant herbaria, special literature and internet sources were used for identification of pollen. Thin layer chromatography was used for identification of carotenoids and flavonoids. Granules were prepared by wet granulation method. Lactose, calcium lactate, calcium carbonate, potato starch and purified water were used as excipients. Appearance, loss on drying, pH of aqueous solution and content of carotenes were estimated. Results. Microscopic analysis showed mostly native pollen identified as willow pollen. Beta-carotene identified and 2 carotenoids found by thin layer chromatography. Two zones of flavonoids found on chromatograms at day light and 6 zones at ultra violet light. The comparison of bee bread samples of 3 regions of Latvia showed insignificant differences in appearance and consistency, hydrogen ion concentration 3.93–4.23, loss on drying 7.72–11.07 %; content of carotenes calculated to bcarotene 6.77–9.35 mg%. Stability study of bee bread samples showed greater changes after storage at 40ºC temperature. All compositions of granules showed appropriate appearance and flowability. Quality of granules: loss on drying 5.48–13.5%, content of carotenes calculated to b-carotene 5.77–6.75 mg%. Conclusions. Pollen of willow can be considered as an indicator of the origin of bee bread in Latvia. Bee bread samples of three regions of Latvia have insignificant differences in physical, chemical parameters.


Sign in / Sign up

Export Citation Format

Share Document