scholarly journals Effects of seepage and weak interlayer on the failure modes of surrounding rock: model tests and numerical analysis

2019 ◽  
Vol 6 (9) ◽  
pp. 190790
Author(s):  
Jing Hu ◽  
Haijia Wen ◽  
Qilong Xie ◽  
Binyang Li ◽  
Qu Mo

The presence of weak interlayers and groundwater are common adverse geological conditions in tunnels. To investigate the modes of failure of rock masses surrounding tunnels owing to weak interlayers and groundwater, model tests and numerical simulations were conducted in this study based on two cases, and a model that considers only the weak interlayer was conducted for comparison. Based on the tests, differences between two models in terms of rock pressure, displacement, cracks and strain were analysed. The results reveal that the presence of groundwater has a significant effect on the space–time distribution of stress, displacement and cracks in the surrounding rock. Furthermore, based on the numerical model, the seepage field was analysed in terms of pore water pressure, permeability and the seepage process to understand the joint action of groundwater and weak interlayer on the failure mechanism of tunnels. The results show that the groundwater and interlayer complement each other to induce the failure mode of the surrounding rock. The water accelerates slip in the interlayer and the development of cracks. Conversely, low strength, muddy weak interlayers serve as the channels of water flow, resulting in deformations and cracks at different locations and different failure modes.

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


2011 ◽  
Vol 71-78 ◽  
pp. 3572-3576
Author(s):  
An Nan Jiang ◽  
Peng Li

The uniform zonal disintegration of surrounding rock is the peculiar phenomena of deep and high stress field, researching the inner mechanism and affecting factors has important meaning for guaranteeing the safety of deep engineering. The paper adopted strain soft Mohr-Coulomb model and carried out numerical simulation of surrounding rock fracture and excavation. The simulation states that along with the unloading time accumulation, the shear belt produced from tunnel wall and developed to inner rock. The corresponding shear stress concentration zone also spread to inner rock and destroy zone increasing. The pore water pressure increasing will accelerate the shear belt developing and increase the destroy degree.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jihuan Han ◽  
Jiuqun Zou ◽  
Weihao Yang ◽  
Chenchen Hu

With the increase in shaft depth, the problem of cracks and leakage in single-layer concrete lining in porous water-rich stable rock strata has become increasingly clear, in which case the mechanism of fracturing in shaft lining remains unclear. Considering that the increase in pore water pressure can cause rock mass expansion, this paper presents the concept of hydraulic expansion coefficient. First, a cubic model containing spherical pores is established for studying hydraulic expansion, and the ANSYS numerical simulation, a finite element numerical method, was used for calculating the volume change of the model under the pore water pressure. By means of the multivariate nonlinear regression method, the regression equation of the hydraulic expansion coefficient is obtained. Second, based on the hydraulic expansion effect on the rock mass, an interaction model of pore water pressure–porous rock–shaft lining is established and further solved. Consequently, the mechanism of fracturing in shaft lining caused by high-pressure pore water is revealed. The results show that the hydraulic expansion effect on the surrounding rock increases with its porosity and decreases with its elastic modulus and Poisson’s ratio; the surrounding rock expansion caused by the change in pore water pressure can result in the outer edge of the lining peeling off from the surrounding rock and tensile fracturing at the inner edge. Therefore, the results have a considerable guiding significance for designing shaft lining through porous water-rich rock strata.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qingzhen Guo ◽  
Haijian Su ◽  
Hongwen Jing ◽  
Wenxin Zhu

Water inrush caused by the wetting-drying cycle is a difficult problem in tunnel excavation. To investigate the effect of the wetting-drying cycle on the stability of the tunnel surrounding rock, physical experiments and numerical simulations regarding the process of tunnel excavation with different wetting-drying cycle numbers were performed in this study. The evolutions of stress, displacement, and pore water pressure were analyzed. With the increase in cycle number, the pore water pressure, vertical stress, and top-bottom approach of the tunnel surrounding rock increase gradually. And the increasing process could be divided into three stages: slightly increasing stage, slowly increasing stage, and sharply increasing stage, respectively. The failure process of the surrounding rock under the wetting-drying cycle gradually occurs from the roof to side wall, while the baseplate changes slightly. The simulation results showed that the maximum principal stress in the surrounding rock mass of the tunnel increases, while the minimum principal stress decreases. Furthermore, the displacement of the rock mass decreases gradually with the increasing distance from the tunnel surface. By comparing the simulation results with the experimental results, well consistency is shown. The results in this study can provide helpful references for the safe excavation and scientific design of a tunnel under the wetting-drying cycle.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Zhan-ping Song ◽  
Ten-tian Yang ◽  
An-nan Jiang

To study the tunnel stability at various static water pressures and determine the mechanical properties and deformation behavior of surrounding rock, a modified effective stress formula was introduced into a numerical integration algorithm of elastic-plastic constitutive equation, that is, closest point projection method (CPPM). Taking the effects of water pressure and seepage into account, a CPPM-based formula was derived and a CPPM algorithm based on Drucker-Prager yield criterion considering the effect of pore water pressure was provided. On this basis, a CPPM-based elastic-plastic numerical analysis program considering pore water pressure was developed, which can be applied in the engineering of tunnels and other underground structures. The algorithm can accurately take the effects of groundwater on stability of surrounding rock mass into account and it can show the more pronounced effect of pore water pressure on stress, deformation, and the plastic zone in a tunnel. The stability of water flooding in Fusong tunnel was systematically analyzed using the developed program. The analysis results showed that the existence of groundwater seepage under tunnel construction will give rise to stress redistribution in the surrounding rock mass. Pore water pressure has a significant effect on the surrounding rock mass.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yingchao Wang ◽  
Yang Liu ◽  
Yongliang Li ◽  
Wen Jiang ◽  
Yueming Wang

The influence of groundwater on tunnel engineering is very complicated. Due to the complexity of water flow water pressure transfer and uncertain defects in the stratum, all of which are key factors with regard to the design of tunnel engineering. Therefore, the variation of surrounding rock during excavation and the deformation and failure of soft surrounding rock under different seepage paths of underground water after excavation systematically. Experimental results showed that the stress change of surrounding rock caused by tunnel excavation can be divided into 3 stages: stress redistribution, stress adjustment, and stress rebalancing. In the process of water pressure loading, water flow rate is closely related to the experimental phenomenon. The between stable loading water pressure pore water pressure of the tunnel surrounding rock and the distance from the measuring point to the edge of the tunnel obey the exponential function of the decreasing growth gradient. With the increase of loading pressure, the pore water pressure and stress at the top of the tunnel increase, and the coupling of stress field and seepage field on both sides of surrounding rock more and more intense. The failure process of the tunnel can be divided into 6 stages according to the damage degree. The final failure pattern of the surrounding rock of the tunnel is mainly determined by the disturbed area of excavation. The arched failure area and the collapse-through failure area are composed of three regions. The surrounding rock is characterized by a dynamic pressure arch in the process of seepage failure, but it is more prone to collapse failure at low water pressure. The results of this study are the progressive failure mechanism of tunnel under different groundwater seepage paths and would be of great significance to the prevention of long-range disasters.


1988 ◽  
Vol 110 (1) ◽  
pp. 17-23 ◽  
Author(s):  
N. Mori ◽  
Y. Ishikawa ◽  
A. Hirayama ◽  
K. Tamaoki ◽  
H. Kobayashi

Offshore structures are subjected to repeated loads from earthquakes and waves which may cause softening of the clayey seabed foundation. Carrying out a series of model tests on a shaking table, the following results are obtained. Settlement and inclination of a model of the base-part of the structure occur when the excess pore water pressure beneath the model rises to about 5 percent of the initial confining pressure. The earthquake response analysis even taking the nonlinearity of the soil into account cannot predict the results of the model test when the pore water pressure does generate and accumulate. Model tests show that the values of the pore water pressure are about twice as large as those predicted by calculation. From these results, rough evaluation of earthquake stability of the clayey seabed under offshore structures are obtained.


2020 ◽  
Vol 313 ◽  
pp. 00030
Author(s):  
Slávka Harabinová ◽  
Eva Panulinová

Analysis and assessment of the slopes stability are an important in geotechnical engineering for all the times. The first and foremost requirement for the modelling and design of slope is to guarantee their safety and reliability during their service life. In analysing the overall stability of the ground, of soil or rock, all relevant modes of failure shall be taken into account. When modelling a slope stability processes, it should be considered: soil layering, occurrence and inclination of discontinuities, seepage and pore-water pressure distribution, shortand long-term stability, type of failure (circular or non-circular surface; toppling; flow), using of numerical methods. The paper deals with the modelling of ensuring slope stability.


Sign in / Sign up

Export Citation Format

Share Document