Recalibration and uncertainty quantification of the B3 creep model for long term estimates using Bayesian methods

Author(s):  
R Wendner ◽  
Mija Hubler ◽  
Z Ba_ant
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 983
Author(s):  
Shixu Wu ◽  
Keting Tong ◽  
Jianmin Wang ◽  
Yushun Li

To expand the application of bamboo as a building material, a new type of box section composite column that combined bamboo and steel was considered in this paper. The creep characteristics of eight bamboo-steel composite columns with different parameters were tested to evaluate the effects of load level, section size and interface type under long-term loading. Then, the deformation development of the composite column under long-term loading was observed and analyzed. In addition, the creep-time relationship curve and the creep coefficient were created. Furthermore, the creep model of the composite column was proposed based on the relationship between the creep of the composite column and the creep of bamboo, and the calculated value of creep was compared with the experimental value. The experimental results showed that the creep development of the composite column was fast at first, and then became stable after about 90 days. The creep characteristics were mainly affected by long-term load level and section size. The creep coefficient was between 0.160 and 0.190. Moreover, the creep model proposed in this paper was applicable to predict the creep development of bamboo-steel composite columns. The calculation results were in good agreement with the experimental results.


2007 ◽  
Vol 52 (7) ◽  
pp. 388-390
Author(s):  
A. M. Kovrizhnykh
Keyword(s):  

2019 ◽  
Vol 43 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Cun-Gui Yu ◽  
Tong-Sheng Sun ◽  
Guang-Yuan Xiao

In this paper, the creep performance of a multi-barrel rocket launch canister under long-term stacking storage is studied. Based on the Bailey–Norton model, a creep model for the frame material of a launch canister was established. Constant stress tensile creep tests under different stress levels at room temperature were carried out on the frame materials of the launch canister and the creep model parameters were obtained by test data fitting. The three-dimensional finite element model of the launch canister was established in the ABAQUS software environment and the creep deformation of the launch canister after long-term stacking storage was studied. The results indicated that the bottom layer of the launch canister frame presented an extended residual deformation when the stacking storage solution with the original support pad was used. Therefore, a position adjustment program of the support pad was put forward. The residual deformation of the launch canister frame after long-term storage could be significantly reduced, thus the performance requirements for the launch canister are guaranteed.


2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Erjian Wei ◽  
Bin Hu ◽  
Jing Li ◽  
Kai Cui ◽  
Zhen Zhang ◽  
...  

A rock creep constitutive model is the core content of rock rheological mechanics theory and is of great significance for studying the long-term stability of engineering. Most of the creep models constructed in previous studies have complex types and many parameters. Based on fractional calculus theory, this paper explores the creep curve characteristics of the creep elements with the fractional order change, constructs a nonlinear viscoelastic-plastic creep model of rock based on fractional calculus, and deduces the creep constitutive equation. By using a user-defined function fitting tool of the Origin software and the Levenberg–Marquardt optimization algorithm, the creep test data are fitted and compared. The fitting curve is in good agreement with the experimental data, which shows the rationality and applicability of the proposed nonlinear viscoelastic-plastic creep model. Through sensitivity analysis of the fractional order β2 and viscoelastic coefficient ξ2, the influence of these creep parameters on rock creep is clarified. The research results show that the nonlinear viscoelastic-plastic creep model of rock based on fractional calculus constructed in this paper can well describe the creep characteristics of rock, and this model has certain theoretical significance and engineering application value for long-term engineering stability research.


2018 ◽  
Vol 149 ◽  
pp. 02027
Author(s):  
Dahhaoui Hachimi ◽  
Belayachi Naima ◽  
Zadjaoui Abdeldjalil

Creep behavior of clayey soils plays an extremely important role in the landslide process. The soils that make up these sliding zones are often in unsaturated state. This point indicates the need to take into account the suction effect as hydric parameter on the long-term deformation of clayey soils. In this paper, a primary creep model named Modified Time Hardening (MTH) for unsaturated soils with different matric suction has been built. Based on the literature tests results[1][2], parameters C1 and C2 of the model have relations with suction and deviator stress level respectively. The primary creep strainwill be able to demonstrate unsaturated effect of the soils. comparison between the calculated results and the literature tests results shows a good coherence. The work underway at the university of Orleans will show later the relevance of model used in the present work.


2011 ◽  
Vol 105-107 ◽  
pp. 832-836 ◽  
Author(s):  
Shu Ren Wang ◽  
Hui Hui Jia

Under low stress conditions, when the load exerting on the mined-out areas roof is less than the rock long-term strength, the rock roof will generate some creep deformation. In order to prevent the roof of the mined-out areas suddenly collapse, and to ensure the operator and construction equipment above the mined-out areas safety, it is an important security technical problem to reveal the creep characteristics of the shallow mined-out areas roof. Taking the mined-out areas of Antaibao Surface Mine as background, considering the rheological properties of rock roof, and assuming the roof was a rectangular thick plate, the creep characteristics of mined-out areas roof were analysed by applying the thick plate theory and Kelvin creep model. The regression equation of the roof deflection increment over time was given, and the creep characteristics of the shallow mined-out areas roof were revealed also.


Author(s):  
Benjamin Mark Sanderson

Long-term planning for many sectors of society—including infrastructure, human health, agriculture, food security, water supply, insurance, conflict, and migration—requires an assessment of the range of possible futures which the planet might experience. Unlike short-term forecasts for which validation data exists for comparing forecast to observation, long-term forecasts have almost no validation data. As a result, researchers must rely on supporting evidence to make their projections. A review of methods for quantifying the uncertainty of climate predictions is given. The primary tool for quantifying these uncertainties are climate models, which attempt to model all the relevant processes that are important in climate change. However, neither the construction nor calibration of climate models is perfect, and therefore the uncertainties due to model errors must also be taken into account in the uncertainty quantification.Typically, prediction uncertainty is quantified by generating ensembles of solutions from climate models to span possible futures. For instance, initial condition uncertainty is quantified by generating an ensemble of initial states that are consistent with available observations and then integrating the climate model starting from each initial condition. A climate model is itself subject to uncertain choices in modeling certain physical processes. Some of these choices can be sampled using so-called perturbed physics ensembles, whereby uncertain parameters or structural switches are perturbed within a single climate model framework. For a variety of reasons, there is a strong reliance on so-called ensembles of opportunity, which are multi-model ensembles (MMEs) formed by collecting predictions from different climate modeling centers, each using a potentially different framework to represent relevant processes for climate change. The most extensive collection of these MMEs is associated with the Coupled Model Intercomparison Project (CMIP). However, the component models have biases, simplifications, and interdependencies that must be taken into account when making formal risk assessments. Techniques and concepts for integrating model projections in MMEs are reviewed, including differing paradigms of ensembles and how they relate to observations and reality. Aspects of these conceptual issues then inform the more practical matters of how to combine and weight model projections to best represent the uncertainties associated with projected climate change.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mingfang Yang ◽  
Song Jin ◽  
Jinxin Gong

Concrete creep plays a significant role in the long-term performance of the prestressed concrete structure. However, most of the existing prediction models cannot accurately reflect the in-site concrete creep in a bridge construction environment. To improve the prediction accuracy of creep effects in concrete structures, an innovative creep analysis method is developed in this study. Parameters in the creep model in fib MC 2010 have been calibrated with respect to the long-term loading test results of the prestressed concrete beam. The measured strains of concrete and the midspan deflections of the test beam are compared with the predicted results using the creep model in fib MC 2010. It indicates that the results predicted by the calibrated creep model are in good agreement with the test results. However, the results predicted by the creep model in fib MC 2010 significantly deviate from the test results. This proposed creep analysis method can provide a new thought to improve the predicted effect of the creep effects on creep-sensitive structures.


Sign in / Sign up

Export Citation Format

Share Document