Research on electrolysis factors of galvanizing slag’s soluble anode effect on current efficiency

Author(s):  
X He ◽  
Y Li ◽  
J Chen ◽  
Z Cai
Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 805
Author(s):  
Shi Zuo ◽  
Jianzhong Zhao ◽  
Yumei Zhou

This article presents a low power digital controlled oscillator (DCO) with an ultra low power duty cycle correction (DCC) scheme. The DCO with the complementary cross-coupled topology uses the controllable tail resistor to improve the tail current efficiency. A robust duty cycle correction (DCC) scheme is introduced to replace self-biased inverters to save power further. The proposed DCO is implemented in a Semiconductor Manufacturing International Corporation (SMIC) 40 nm CMOS process. The measured phase noise at room temperature is −115 dBc/Hz at 1 MHz offset with a dissipation of 210 μμW at an oscillating frequency of 2.12 GHz, and the resulin figure-of-merit is s −189 dBc/Hz.


2021 ◽  
Vol 5 (4) ◽  
pp. 935-940
Author(s):  
Jun Kubota ◽  
Takaya Okumura

Direct electrochemical conversion of CO2 and H2O to CH4 in a combined Ru-catalyst and H2O electrolyzer system was examined at 270 °C, thus obtaining a current efficiency of 93% for CH4 formation.


2021 ◽  
Vol 11 (3) ◽  
pp. 31
Author(s):  
Anindita Paul ◽  
Mario Renteria-Pinon ◽  
Jaime Ramirez-Angulo ◽  
Ricardo Bolaños-Pérez ◽  
Héctor Vázquez-Leal ◽  
...  

An approach to implement single-ended power-efficient static class-AB Miller op-amps with symmetrical and significantly enhanced slew-rate and accurately controlled output quiescent current is introduced. The proposed op-amp can drive a wide range of resistive and capacitive loads. The output positive and negative currents can be much higher than the total op-amp quiescent current. The enhanced performance is achieved by utilizing a simple low-power auxiliary amplifier with resistive local common-mode feedback that increases the quiescent power dissipation by less than 10%. The proposed class AB op-amp is characterized by significantly enhanced large-signal dynamic, static current efficiency, and small-signal figures of merits. The dynamic current efficiency is 15.6 higher, the static current efficiency is 8.9 times higher, and the small-signal figure of merit is 2.3 times higher than the conventional class-A op-amp. A global figure of merit that determines an op-amp’s ultimate speed is 6.33 times higher than the conventional class A op-amp.


Author(s):  
Dan Liu ◽  
Meng Zhang ◽  
Haowen Chen ◽  
Daiyu Ma ◽  
Wenwen Tian ◽  
...  

Non-doped solution-processed OLEDs based on emitters with host-σ-guest structures showed blue emission with CIE (0.18, 0.31), 24.9 cd A−1 current efficiency and 9.5 lm W−1 power efficiency.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4615
Author(s):  
Dovydas Blazevicius ◽  
Daiva Tavgeniene ◽  
Simona Sutkuviene ◽  
Ernestas Zaleckas ◽  
Ming-Ruei Jiang ◽  
...  

Pyridinyl-carbazole fragments containing low molar mass compounds as host derivatives H1 and H2 were synthesized, investigated, and used for the preparation of electro-phosphorescent organic light-emitting devices (PhOLEDs). The materials demonstrated high stability against thermal decomposition with the decomposition temperatures of 361–386 °C and were suitable for the preparation of thin amorphous and homogeneous layers with very high values of glass transition temperatures of 127–139 °C. It was determined that triplet energy values of the derivatives are, correspondingly, 2.82 eV for the derivative H1 and 2.81 eV for the host H2. The new derivatives were tested as hosts of emitting layers in blue, as well as in green phosphorescent OLEDs. The blue device with 15 wt.% of the iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic) emitter doping ratio in host material H2 exhibited the best overall characteristics with a power efficiency of 24.9 lm/W, a current efficiency of 23.9 cd/A, and high value of 10.3% of external quantum efficiency at 100 cd/m2. The most efficient green PhOLED with 10 wt% of Ir(ppy)3 {tris(2-phenylpyridine)iridium(III)} in the H2 host showed a power efficiency of 34.1 lm/W, current efficiency of 33.9 cd/A, and a high value of 9.4% for external quantum efficiency at a high brightness of 1000 cd/m2, which is required for lighting applications. These characteristics were obtained in non-optimized PhOLEDs under an ordinary laboratory atmosphere and could be improved in the optimization process. The results demonstrate that some of the new host materials are very promising components for the development of efficient phosphorescent devices.


2017 ◽  
Vol 5 (32) ◽  
pp. 8150-8159 ◽  
Author(s):  
Hua-Bo Han ◽  
Rong-Zhen Cui ◽  
Yi-Ming Jing ◽  
Guang-Zhao Lu ◽  
You-Xuan Zheng ◽  
...  

Two orange-red iridium complexes with high quantum yields and good electron mobility were applied in efficient OLEDs showing a maximum luminance of 129 466 cd m−2, a maximum current efficiency of 62.96 cd A−1 with low efficiency roll-off.


Sign in / Sign up

Export Citation Format

Share Document