Changes of Body Mass and Energy Balance during Fasting and Dietary Restriction

Author(s):  
Ezdine Bouhlel ◽  
Roy Shephard
1980 ◽  
Vol 238 (5) ◽  
pp. R400-R405 ◽  
Author(s):  
M. L. Laudenslager ◽  
C. W. Wilkinson ◽  
H. J. Carlisle ◽  
H. T. Hammel

The effect of estrogen replacement on several parameters of energy balance was investigated in ovariectomized rats tested during the dark phase of their diurnal cycle. Estrogen replacement, either as 17 beta-estradiol or beta-estradiol-3-benzoate via subcutaneous Silastic capsules, was associated with elevated rates of heat production and dry heat loss relative to untreated ovariectomized controls. Estrogen treatment reduced body mass and retarded fur growth. The effects of estrogen replacement on heat production and dry heat loss could not be attributed to these differences in body mass and fur growth or locomotor activity. Estrogen replacement had no effect on rate of evaporative heat loss. If estrogen replacement was delayed 75 days following ovariectomy, the increase in heat production and dry heat loss was not observed. There was no effect of the hormone treatment on rectal temperature. It was concluded that either heat production was elevated, with dry heat loss increased to compensate for the additional thermal load, or dry heat loss was accelerated with heat production elevated in compensation.


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0202390 ◽  
Author(s):  
Alexios Batrakoulis ◽  
Athanasios Z. Jamurtas ◽  
Kalliopi Georgakouli ◽  
Dimitrios Draganidis ◽  
Chariklia K. Deli ◽  
...  

2013 ◽  
Vol 38 (4) ◽  
pp. 396-400 ◽  
Author(s):  
Lee M. Margolis ◽  
Jennifer Rood ◽  
Catherine Champagne ◽  
Andrew J. Young ◽  
John W. Castellani

Small Unit Tactics (SUT) is a 64-day phase of the Special Forces Qualification Course designed to simulate real-world combat operations. Assessing the metabolic and physiological responses of such intense training allows greater insights into nutritional requirements of soldiers during combat. The purpose of this study was to examine energy balance around specific training events, as well as changes in body mass and composition. Data were collected from 4 groups of soldiers (n = 36) across 10-day periods. Participants were 28 ± 5 years old, 177 ± 6 cm tall, and weighed 83 ± 7 kg. Doubly labeled water (D218O) was used to assess energy expenditure. Energy intake was calculated by subtracting energy in uneaten foods from known energy in distributed foods in individually packaged combat rations or in the dining facility. Body composition was estimated from skinfold thickness measurements on days 0 and 64 of the course. Simulated urban combat elicited that largest energy deficit (11.3 ± 2.3 MJ·day−1 (2700 ± 550 kcal·day−1); p < 0.05), and reduction in body mass (3.3 ± 1.9 kg; p < 0.05), during SUT, while energy balance was maintained during weapons familiarization training and platoon size raids. Over the entire course body mass decreased by 4.2 ± 3.7 kg (p < 0.01), with fat mass decreasing by 2.8 ± 2.0 kg (p < 0.01) and fat-free mass decreasing by 1.4 ± 2.8 kg (p < 0.05). The overall reduction in body mass suggests that soldiers were in a negative energy balance during SUT, with high energy deficit being observed during strenuous field training.


1999 ◽  
Vol 2 (3a) ◽  
pp. 335-339 ◽  
Author(s):  
Marleen A. Van Baak

AbstractEnergy expenditure rises above resting energy expenditure when physical activity is performed. The activity-induced energy expenditure varies with the muscle mass involved and the intensity at which the activity is performed: it ranges between 2 and 18 METs approximately. Differences in duration, frequency and intensity of physical activities may create considerable variations in total energy expenditure. The Physical Activity Level (= total energy expenditure divided by resting energy expenditure) varies between 1.2 and 2.2–2.5 in healthy adults. Increases in activity-induced energy expenditure have been shown to result in increases in total energy expenditure, which are usually greater than the increase in activity-induced energy expenditure itself. No evidence for increased spontaneous physical activity, measured by diary, interview or accelerometer, was found. However, this does not exclude increased physical activity that can not be measured by these methods. Part of the difference may also be explained by the post-exercise elevation of metabolic rate.If changes in the level of physical activity affect energy balance, this should result in changes in body mass or body composition. Modest decreases of body mass and fat mass are found in response to increases in physical activity, induced by exercise training, which are usually smaller than predicted from the increase in energy expenditure. This indicates that the training-induced increase in total energy expenditure is at least partly compensated for by an increase in energy intake. There is some evidence that the coupling between energy expenditure and energy intake is less at low levels of physical activity. Increasing the level of physical activity for weight loss may therefore be most effective in the most sedentary individuals.


Sign in / Sign up

Export Citation Format

Share Document