scholarly journals CCAAT/Enhancer Binding Protein Homologous Protein (DDIT3) Induces Osteoblastic Cell Differentiation

Endocrinology ◽  
2004 ◽  
Vol 145 (4) ◽  
pp. 1952-1960 ◽  
Author(s):  
Renata C. Pereira ◽  
Anne M. Delany ◽  
Ernesto Canalis

Abstract CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP/DDIT3), a member of the C/EBP family of transcription factors, plays a role in cell survival and differentiation. CHOP/DDIT3 binds to C/EBPs to form heterodimers that do not bind to consensus Cebp sequences, acting as a dominant-negative inhibitor. CHOP/DDIT3 blocks adipogenesis, and we postulated it could induce osteoblastogenesis. We investigated the effects of constitutive CHOP/DDIT3 overexpression in murine ST-2 stromal cells transduced with retroviral vectors. ST-2 cells differentiated toward osteoblasts, and CHOP/DDIT3 accelerated and enhanced the appearance of mineralized nodules, and the expression of osteocalcin and alkaline phosphatase mRNAs, particularly in the presence of bone morphogenetic protein-2. CHOP/DDIT3 overexpression opposed adipogenesis, and did not cause substantial changes in cell number. CHOP/DDIT3 overexpression did not modify C/EBPα or -β mRNA levels but decreased C/EBPδ after 24 d of culture. Electrophoretic mobility shift and supershift assays demonstrated that overexpression of CHOP/DDIT3 decreased the binding of C/EBPs to their consensus sequence by interacting with C/EBPα and -β, confirming its dominant-negative role. In addition, CHOP/DDIT3 enhanced bone morphogenetic protein-2/Smad signaling. In conclusion, CHOP/DDIT3 enhances osteoblastic differentiation of stromal cells, in part by interacting with C/EBPα and -β and also by enhancing Smad signaling.

Endocrinology ◽  
2010 ◽  
Vol 151 (10) ◽  
pp. 5007-5016 ◽  
Author(s):  
Xiao-Huan Liang ◽  
Zhen-Ao Zhao ◽  
Wen-Bo Deng ◽  
Zhen Tian ◽  
Wei Lei ◽  
...  

Embryo implantation is an intricate interaction between receptive uterus and active blastocyst. The mechanism underlying embryo implantation is still unknown. Although histamine and putrescine are important for embryo implantation and decidualization, excess amount of histamine and putrescine is harmful. Amiloride binding protein 1 (Abp1) is a membrane-associated amine oxidase and mainly metabolizes histamine and putrescine. In this study, we first showed that Abp1 is strongly expressed in the decidua on d 5–8 of pregnancy. Abp1 expression is not detected during pseudopregnancy and under delayed implantation but is detected after estrogen activation. Because Abp1 is mainly localized in the decidua and also strongly expressed during in vitro decidualization, Abp1 might play a role during mouse decidualization. The regulation of estrogen on Abp1 is mediated by transcription factor CCAAT/enhancer-binding protein-β. Abp1 expression is also regulated by cAMP, bone morphogenetic protein 2, and ERK1/2. Abp1 may be essential for mouse embryo implantation and decidualization.


2002 ◽  
Vol 367 (1) ◽  
pp. 203-208 ◽  
Author(s):  
Anne W. HARMON ◽  
Yashomati M. PATEL ◽  
Joyce B. HARP

The tyrosine kinase inhibitor genistein inhibits 3T3-L1 adipogenesis when present during the first 72h of differentiation. In this report, we investigated the underlying mechanisms involved in the anti-adipogenic effects of genistein. We found that genistein blocked the DNA binding and transcriptional activity of CCAAT/enhancer-binding protein β (C/EBPβ) during differentiation by promoting the expression of C/EBP homologous protein, a dominant-negative member of the C/EBP family. Loss of C/EBPβ activity was manifested as a loss of differentiation-induced C/EBPα and peroxisome-proliferator-activated receptor γ protein expression and a dramatic reduction in lipid accumulation. Further, we documented for the first time that C/EBPβ was tyrosine-phosphorylated in vivo during differentiation and in vitro by activated epidermal growth factor receptor. Genistein inhibited both of these events. Collectively, these results indicate that genistein blocks adipogenesis and C/EBPβ activity by increasing the level of C/EBP homologous protein and possibly by inhibiting the tyrosine phosphorylation of C/EBPβ.


Nanoscale ◽  
2020 ◽  
Vol 12 (13) ◽  
pp. 7284-7300 ◽  
Author(s):  
Xiangfeng Li ◽  
Minjun Liu ◽  
Fuying Chen ◽  
Yuyi Wang ◽  
Menglu Wang ◽  
...  

Biomimicking the nanostructure of natural bone apatite to enhance the bioactivity of hydroxyapatite (HA) biomaterials is an eternal topic in the bone regeneration field.


2019 ◽  
Vol 25 (7-8) ◽  
pp. 642-651 ◽  
Author(s):  
Adeline Decambron ◽  
Nausikaa Devriendt ◽  
Nathanael Larochette ◽  
Mathieu Manassero ◽  
Marianne Bourguignon ◽  
...  

2006 ◽  
Vol 282 (7) ◽  
pp. 4983-4993 ◽  
Author(s):  
Nandini Ghosh-Choudhury ◽  
Chandi Charan Mandal ◽  
Goutam Ghosh Choudhury

Lovastatin promotes osteoblast differentiation by increasing bone morphogenetic protein-2 (BMP-2) expression. We demonstrate that lovastatin stimulates tyrosine phosphorylation of the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K), leading to an increase in its kinase activity in osteoblast cells. Inhibition of PI3K ameliorated expression of the osteogenic markers alkaline phosphatase, type I collagen, osteopontin, and BMP-2. Expression of dominant-negative PI3K and PTEN, an inhibitor of PI3K signaling, significantly attenuated lovastatin-induced transcription of BMP-2. Akt kinase was also activated in a PI3K-dependent manner. However, our data suggest involvement of an additional signaling pathway. Lovastatin-induced Erk1/2 activity contributed to BMP-2 transcription. Inhibition of PI3K abrogated Erk1/2 activity in response to lovastatin, indicating the presence of a signal relay between them. We provide, as a mechanism of this cross-talk, the first evidence that lovastatin stimulates rapid activation of Ras, which associates with and activates PI3K in the plasma membrane, which in turn regulates Akt and Erk1/2 to induce BMP-2 expression for osteoblast differentiation.


2005 ◽  
Vol 25 (5) ◽  
pp. 1971-1979 ◽  
Author(s):  
Kenji Hata ◽  
Riko Nishimura ◽  
Mio Ueda ◽  
Fumiyo Ikeda ◽  
Takuma Matsubara ◽  
...  

ABSTRACT Although both osteoblasts and adipocytes have a common origin, i.e., mesenchymal cells, the molecular mechanisms that define the direction of two different lineages are presently unknown. In this study, we investigated the role of a transcription factor, CCAAT/enhancer binding protein β (C/EBPβ), and its isoform in the regulation of balance between osteoblast and adipocyte differentiation. We found that C/EBPβ, which is induced along with osteoblast differentiation, promotes the differentiation of mesenchymal cells into an osteoblast lineage in cooperation with Runx2, an essential transcription factor for osteogenesis. Surprisingly, an isoform of C/EBPβ, liver-enriched inhibitory protein (LIP), which lacks the transcriptional activation domain, stimulates transcriptional activity and the osteogenic action of Runx2, although LIP inhibits adipogenesis in a dominant-negative fashion. Furthermore, LIP physically associates with Runx2 and binds to the C/EBP binding element present in the osteocalcin gene promoter. These data indicate that LIP functions as a coactivator for Runx2 and preferentially promotes the osteoblast differentiation of mesenchymal cells. Thus, identification of a novel role of the C/EBPβ isoform provides insight into the molecular basis of the regulation of osteoblast and adipocyte commitment.


Sign in / Sign up

Export Citation Format

Share Document