scholarly journals Minireview: Gut Peptides Regulating Satiety

Endocrinology ◽  
2004 ◽  
Vol 145 (6) ◽  
pp. 2660-2665 ◽  
Author(s):  
Maralyn R. Druce ◽  
Caroline J. Small ◽  
Stephen R. Bloom

Abstract The gastrointestinal tract and the pancreas release hormones regulating satiety and body weight. Ghrelin stimulates appetite, and glucagon-like peptide-1, oxyntomodulin, peptide YY, cholecystokinin, and pancreatic polypeptide inhibit appetite. These gut hormones act to markedly alter food intake in humans and rodents. Obesity is the current major cause of premature death in the United Kingdom, killing almost 1000 people per week. Worldwide, its prevalence is accelerating. There is currently no effective answer to the pandemic of obesity, but replacement of the low levels of peptide YY observed in the obese may represent an effective antiobesity therapy.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Anya Ramgulam ◽  
Martina Tashkova ◽  
Maeve O’Driscoll ◽  
Georgia Franco Becker ◽  
Hannah Stephens ◽  
...  

Abstract Background The gut-brain axis plays important roles in the regulation of appetite and glucose homeostasis. The presence of nutrients and their digestive products in specific regions of the gastrointestinal tract modulates neuronal and hormonal signalling, including the release of the appetite-suppressing gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). While there has been significant research into the upper gut mechanisms behind satiation, i.e. the termination of meal, the role of the ileum and colon in satiety, i.e. the process which delays a subsequent meal, has been relatively little investigated, particularly in humans. Methods Ten healthy volunteers attended our Clinical Research Facility for two visits of four days each. At each visit they had either a nasoileal or a nasocolonic tube inserted under fluoroscopy. They were then provided a diet rich in protein and fibre to promote satiety. Gut contents and blood samples were taken before and during test meals at the start and end of the visit, and visual analogue scales were used to measure subjective feelings of appetite. Metabonomic analysis of gut fluid was carried out using a combination of in-house NMR and LC-MS-based methods. 16S rRNA gene sequencing was used to investigate effects on the colonic microbiome. Circulating levels of glucose, the gut hormones GLP-1 and PYY, and the pancreatic hormones insulin and glucagon were measured. Results and discussion The test meals resulted in sustained suppression of appetite and release of GLP-1 and PYY. Ileal and colonic microbial profiles were distinct from those identified in stool samples, and changed with adaptation to the high protein and fibre diet. Integrating hormonal, metabonomic and bacterial datasets from these human studies gives insight into how nutrient and metabolite sensing in the gastrointestinal tract regulates appetite and glucose homeostasis, and may suggest novel therapeutic targets for metabolic disease.


2001 ◽  
Vol 281 (3) ◽  
pp. G752-G763 ◽  
Author(s):  
Feruze Y. Enç ◽  
Neşe I˙meryüz ◽  
Levent Akin ◽  
Turgut Turoğlu ◽  
Fuat Dede ◽  
...  

We investigated the effect of acarbose, an α-glucosidase and pancreatic α-amylase inhibitor, on gastric emptying of solid meals of varying nutrient composition and plasma responses of gut hormones. Gastric emptying was determined with scintigraphy in healthy subjects, and all studies were performed with and without 100 mg of acarbose, in random order, at least 1 wk apart. Acarbose did not alter the emptying of a carbohydrate-free meal, but it delayed emptying of a mixed meal and a carbohydrate-free meal given 2 h after sucrose ingestion. In meal groups with carbohydrates, acarbose attenuated responses of plasma insulin and glucose-dependent insulinotropic polypeptide (GIP) while augmenting responses of CCK, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). With mixed meal + acarbose, area under the curve (AUC) of gastric emptying was positively correlated with integrated plasma response of GLP-1 ( r = 0.68 , P < 0.02). With the carbohydrate-free meal after sucrose and acarbose ingestion, AUC of gastric emptying was negatively correlated with integrated plasma response of GIP, implying that prior alteration of carbohydrate absorption modifies gastric emptying of a meal. The results demonstrate that acarbose delays gastric emptying of solid meals and augments release of CCK, GLP-1, and PYY mainly by retarding/inhibiting carbohydrate absorption. Augmented GLP-1 release by acarbose appears to play a major role in the inhibition of gastric emptying of a mixed meal, whereas CCK and PYY may have contributory roles.


2004 ◽  
Vol 286 (5) ◽  
pp. G693-G697 ◽  
Author(s):  
Sarah Stanley ◽  
Katie Wynne ◽  
Steve Bloom

Many peptides are synthesized and released from the gastrointestinal tract and pancreas, including pancreatic polypeptide (PP) and the products of the gastrointestinal L cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY). Whereas their roles in regulation of gastrointestinal function have been known for some time, it is now evident that they also influence eating behavior. This review considers the anorectic peptides PYY, PP, GLP-1, and oxyntomodulin, which decrease appetite and promote satiety in both animal models and humans.


Endocrinology ◽  
1999 ◽  
Vol 140 (1) ◽  
pp. 244-250 ◽  
Author(s):  
Karim Meeran ◽  
Donal O’Shea ◽  
C. Mark B. Edwards ◽  
Mandy D. Turton ◽  
Melanie M. Heath ◽  
...  

Abstract Central nervous system glucagon-like peptide-1-(7–36) amide (GLP-1) administration has been reported to acutely reduce food intake in the rat. We here report that repeated intracerebroventricular (icv) injection of GLP-1 or the GLP-1 receptor antagonist, exendin-(9–39), affects food intake and body weight. Daily icv injection of 3 nmol GLP-1 to schedule-fed rats for 6 days caused a reduction in food intake and a decrease in body weight of 16 ± 5 g (P &lt; 0.02 compared with saline-injected controls). Daily icv administration of 30 nmol exendin-(9–39) to schedule-fed rats for 3 days caused an increase in food intake and increased body weight by 7 ± 2 g (P &lt; 0.02 compared with saline-injected controls). Twice daily icv injections of 30 nmol exendin-(9–39) with 2.4 nmol neuropeptide Y to ad libitum-fed rats for 8 days increased food intake and increased body weight by 28 ± 4 g compared with 14 ± 3 g in neuropeptide Y-injected controls (P &lt; 0.02). There was no evidence of tachyphylaxis in response to icv GLP-1 or exendin-(9–39). GLP-1 may thus be involved in the regulation of body weight in the rat.


2012 ◽  
Vol 71 (4) ◽  
pp. 446-455 ◽  
Author(s):  
Rojo Rasoamanana ◽  
Nicolas Darcel ◽  
Gilles Fromentin ◽  
Daniel Tomé

Recent advances highlight that nutrient receptors (such as T1R1/T1R3 heterodimer, Ca sensing receptor and GPR93 for amino acids and protein, GPR40, GPR41, GPR43 and GPR120 for fatty acids, T1R2/T1R3 heterodimer for monosaccharides) are expressed in the apical face of the gut and sense nutrients in the lumen. They transduce signals for the regulation of nutrient transporter expressions in the apical face. Interestingly, they are also localised in enteroendocrine cells (EEC) and mainly exert a direct control on the secretion in the lamina propria of gastro-intestinal peptides such as cholecystokinin, glucagon-like peptide-1 and peptide YY in response to energy nutrient transit and absorption in the gut. This informs central nuclei involved in the control of feeding such as the hypothalamus and nucleus of the solitary tract of the availability of these nutrients and thus triggers adaptive responses to maintain energy homoeostasis. These nutrient receptors then have a prominent position since they manage nutrient absorption and are principally the generator of the first signal of satiation mechanisms mainly transmitted to the brain by vagal afferents. Moreover, tastants are also able to elicit gut peptides secretion via chemosensory receptors expressed in EEC. Targeting these nutrient and tastant receptors in EEC may thus be helpful to promote satiation and so to fight overfeeding and its consequences.


2009 ◽  
Vol 297 (5) ◽  
pp. G861-G868 ◽  
Author(s):  
Jutta Keller ◽  
Christoph Beglinger ◽  
Jens Juul Holst ◽  
Viola Andresen ◽  
Peter Layer

It is unclear why patients with inflammation of the distal bowel complain of symptoms referable to the upper gastrointestinal tract, specifically to gastric emptying (GE) disturbances. Thus we aimed to determine occurrence and putative pathomechanisms of gastric motor disorders in such patients. Thirteen healthy subjects (CON), 13 patients with Crohn's disease (CD), 10 with ulcerative colitis (UC), and 7 with diverticulitis (DIV) underwent a standardized 13C-octanoic acid gastric emptying breath test. Plasma glucose, CCK, peptide YY, and glucagon-like peptide-1 (GLP-1) were measured periodically and correlated with GE parameters. Results were given in means ± SD. Compared with CON, GE half time (T) was prolonged by 50% in CD (115 ± 55 vs. 182 ± 95 min, P = 0.037). Six CD, 2 DIV, and 2 UC patients had pathological T (>200 min). Postprandial plasma glucose was increased in all patients but was highest in DIV and correlated with T ( r = 0.90, P = 0.006). In CD, mean postprandial CCK levels were increased threefold compared with CON (6.5 ± 6.7 vs. 2.1 ± 0.6 pmol/l, P = 0.027) and were correlated with T ( r = 0.60, P = 0.041). Compared with CON, GLP-1 levels were increased in UC (25.1 ± 5.2 vs. 33.5 ± 13.0 pmol/l, P = 0.046) but markedly decreased in DIV (9.6 ± 5.2 pmol/l, P < 0.0001). We concluded that a subset of patients with CD, UC, or DIV has delayed GE. GE disturbances are most pronounced in CD and might partly be caused by excessive CCK release. In DIV there might be a pathophysiological link between decreased GLP-1 release, postprandial hyperglycemia, and delayed GE. These explorative data encourage further studies in larger patient groups.


2012 ◽  
Vol 108 (5) ◽  
pp. 778-793 ◽  
Author(s):  
F. A. Duca ◽  
M. Covasa

The gastrointestinal peptides are classically known as short-term signals, primarily inducing satiation and/or satiety. However, accumulating evidence has broadened this view, and their role in long-term energy homeostasis and the development of obesity has been increasingly recognised. In the present review, the recent research involving the role of satiation signals, especially ghrelin, cholecystokinin, glucagon-like peptide 1 and peptide YY, in the development and treatment of obesity will be discussed. Their activity, interactions and release profile vary constantly with changes in dietary and energy influences, intestinal luminal environment, body weight and metabolic status. Manipulation of gut peptides and nutrient sensors in the oral and postoral compartments through diet and/or changes in gut microflora or using multi-hormone ‘cocktail’ therapy are among promising approaches aimed at reducing excess food consumption and body-weight gain.


2014 ◽  
Vol 11 (4) ◽  
pp. 64
Author(s):  
Teona Albertovna Shvangiradze

Orlistat, which reduces fat absorption by inhibiting intestinal lipase is a registered drug for obesity pharmacotherapy. Meta-analyzes indicate various positive metabolic effects of orlistat, including improvements in glucose and lipid metabolism, lowering both systolic and diastolic blood pressure. It is assumed that orlistat can reduce postprandial satiety by inhibiting the release of intestinal hormones (incretins), especially glucagon-like peptide-1 (GLP-1). Impact analysis of the secretion of incretins, with prolonged use of orlistat was conducted. The aim of the study M.Olszanecka-Glinianowicz et al. was to evaluate the effect of 8 weeks of treatment with orlistat as part of a weight loss program for preprandialnye levels of peptide YY and GLP-1.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 844 ◽  
Author(s):  
Carme Grau-Bové ◽  
Carlos González-Quilen ◽  
Ximena Terra ◽  
M. Teresa Blay ◽  
Raul Beltrán-Debón ◽  
...  

Some beneficial effects of grape seed proanthocyanidin extract (GSPE) can be explained by the modulation of enterohormone secretion. As GSPE comprises a combination of different molecules, the pure compounds that cause these effects need to be elucidated. The enterohormones and chemoreceptors present in the gastrointestinal tract differ between species, so if humans are to gain beneficial effects, species closer to humans—and humans themselves—must be used. We demonstrate that 100 mg/L of GSPE stimulates peptide YY (PYY) release, but not glucagon-like peptide 1 (GLP-1) release in the human colon. We used a pig ex vivo system that differentiates between apical and basolateral intestinal sides to analyse how apical stimulation with GSPE and its pure compounds affects the gastrointestinal tract. In pigs, apical GSPE treatment stimulates the basolateral release of PYY in the duodenum and colon and that of GLP-1 in the ascending, but not the descending colon. In the duodenum, luminal stimulation with procyanidin dimer B2 increased PYY secretion, but not CCK secretion, while catechin monomers (catechin/epicatechin) significantly increased CCK release, but not PYY release. The differential effects of GSPE and its pure compounds on enterohormone release at the same intestinal segment suggest that they act through chemosensors located apically and unevenly distributed along the gastrointestinal tract.


Sign in / Sign up

Export Citation Format

Share Document