scholarly journals Bovine Serum Albumin-Estrogen Compounds Differentially Alter Gonadotropin-Releasing Hormone-1 Neuronal Activity

Endocrinology ◽  
2005 ◽  
Vol 146 (2) ◽  
pp. 558-563 ◽  
Author(s):  
Jennifer L. Temple ◽  
Susan Wray

Abstract Steroid hormones regulate a host of physiological processes and behaviors. These actions can occur by genomic mechanisms involving gene transcription or by nongenomic mechanisms proposed to involve receptors associated with the plasma membrane. BSA-conjugated steroid hormones have been extensively used to elucidate signal transduction pathways for these hormones. We have previously shown, using calcium imaging, that 17β-estradiol (E2) significantly increases GnRH-1 neuronal activity. During the course of these experiments, it became apparent that three different BSA-estrogen compounds have been used in a variety of cell types: 17β-estradiol 6-O-carboxymethyloxime-BSA (E2-6-BSA); 1,3,5(10)-estratrien-3,16α,17β-triol-6-one 6-O-carboxymethyloxime-BSA (E-6-BSA); and 1,3,5(10)-estratrien-3,17β-diol 17-hemisuccinate-BSA (E2-17-BSA). The effects of these compounds on GnRH-1 neuronal activity were compared using calcium imaging. E-6-BSA and E2-17-BSA, but not E2-6-BSA, significantly increased all parameters of GnRH-1 neuronal activity. In addition, the effects of these two BSA compounds were reversed by the estrogen receptor antagonist ICI 182,780 but not by inhibition of gene transcription. The effects of E2-17-BSA, but not E-6-BSA were reversed by treatment with pertussis toxin, which blocks G protein-coupled receptors. These data indicate that these compounds cannot be used interchangeably and clearly have different binding properties and/or different effects on target tissues.

2016 ◽  
Vol 44 (2) ◽  
pp. 562-567 ◽  
Author(s):  
Andrew M. Ellisdon ◽  
Michelle L. Halls

With >800 members, G protein-coupled receptors (GPCRs) are the largest class of cell-surface signalling proteins, and their activation mediates diverse physiological processes. GPCRs are ubiquitously distributed across all cell types, involved in many diseases and are major drug targets. However, GPCR drug discovery is still characterized by very high attrition rates. New avenues for GPCR drug discovery may be provided by a recent shift away from the traditional view of signal transduction as a simple chain of events initiated from the plasma membrane. It is now apparent that GPCR signalling is restricted to highly organized compartments within the cell, and that GPCRs activate distinct signalling pathways once internalized. A high-resolution understanding of how compartmentalized signalling is controlled will probably provide unique opportunities to selectively and therapeutically target GPCRs.


2017 ◽  
Author(s):  
Vladimir Camarena ◽  
David W. Sant ◽  
Tyler C. Huff ◽  
Sushmita Mustafi ◽  
Ryan K. Muir ◽  
...  

AbstractIt is widely accepted that cAMP regulates gene transcription principally by activating the protein kinase A (PKA)-targeted transcription factors. Here, we show that cAMP enhances the generation of 5-hydroxymethylcytosine (5hmC) in multiple cell types. 5hmC is converted from 5-methylcytosine (5mC) by Tet methylcytosine dioxygenases, for which Fe(II) is an essential cofactor. The promotion of 5hmC was mediated by a prompt increase of the intracellular labile Fe(II) pool (LIP). cAMP enhanced the acidification of endosomes for Fe(II) release to the LIP likely through RapGEF2. The effect of cAMP on Fe(II) and 5hmC was confirmed by adenylate cyclase activators, phosphodiesterase inhibitors, and most notably by stimulation of G protein-coupled receptors (GPCR). The transcriptomic changes caused by cAMP occurred in concert with 5hmC elevation in differentially transcribed genes. Collectively, these data show a previously unrecognized regulation of gene transcription by GPCR-cAMP signaling through augmentation of the intracellular labile Fe(II) pool and DNA demethylation.


2017 ◽  
Vol 313 (6) ◽  
pp. R633-R645 ◽  
Author(s):  
Jingwei Jiang ◽  
Huxing Cui ◽  
Kamal Rahmouni

Remote and selective spatiotemporal control of the activity of neurons to regulate behavior and physiological functions has been a long-sought goal in system neuroscience. Identification and subsequent bioengineering of light-sensitive ion channels (e.g., channelrhodopsins, halorhodopsin, and archaerhodopsins) from the bacteria have made it possible to use light to artificially modulate neuronal activity, namely optogenetics. Recent advance in genetics has also allowed development of novel pharmacological tools to selectively and remotely control neuronal activity using engineered G protein-coupled receptors, which can be activated by otherwise inert drug-like small molecules such as the designer receptors exclusively activated by designer drug, a form of chemogenetics. The cutting-edge optogenetics and pharmacogenetics are powerful tools in neuroscience that allow selective and bidirectional modulation of the activity of defined populations of neurons with unprecedented specificity. These novel toolboxes are enabling significant advances in deciphering how the nervous system works and its influence on various physiological processes in health and disease. Here, we discuss the fundamental elements of optogenetics and chemogenetics approaches and some of the applications that yielded significant advances in various areas of neuroscience and beyond.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Vladimir Camarena ◽  
David W Sant ◽  
Tyler C Huff ◽  
Sushmita Mustafi ◽  
Ryan K Muir ◽  
...  

It is widely accepted that cAMP regulates gene transcription principally by activating the protein kinase A (PKA)-targeted transcription factors. Here, we show that cAMP enhances the generation of 5-hydroxymethylcytosine (5hmC) in multiple cell types. 5hmC is converted from 5-methylcytosine (5mC) by Tet methylcytosine dioxygenases, for which Fe(II) is an essential cofactor. The promotion of 5hmC was mediated by a prompt increase of the intracellular labile Fe(II) pool (LIP). cAMP enhanced the acidification of endosomes for Fe(II) release to the LIP likely through RapGEF2. The effect of cAMP on Fe(II) and 5hmC was confirmed by adenylate cyclase activators, phosphodiesterase inhibitors, and most notably by stimulation of G protein-coupled receptors (GPCR). The transcriptomic changes caused by cAMP occurred in concert with 5hmC elevation in differentially transcribed genes. Collectively, these data show a previously unrecognized regulation of gene transcription by GPCR-cAMP signaling through augmentation of the intracellular labile Fe(II) pool and DNA hydroxymethylation.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 89
Author(s):  
Samantha Sparapani ◽  
Cassandra Millet-Boureima ◽  
Joshua Oliver ◽  
Kathy Mu ◽  
Pegah Hadavi ◽  
...  

Vasopressins are evolutionarily conserved peptide hormones. Mammalian vasopressin functions systemically as an antidiuretic and regulator of blood and cardiac flow essential for adapting to terrestrial environments. Moreover, vasopressin acts centrally as a neurohormone involved in social and parental behavior and stress response. Vasopressin synthesis in several cell types, storage in intracellular vesicles, and release in response to physiological stimuli are highly regulated and mediated by three distinct G protein coupled receptors. Other receptors may bind or cross-bind vasopressin. Vasopressin is regulated spatially and temporally through transcriptional and post-transcriptional mechanisms, sex, tissue, and cell-specific receptor expression. Anomalies of vasopressin signaling have been observed in polycystic kidney disease, chronic heart failure, and neuropsychiatric conditions. Growing knowledge of the central biological roles of vasopressin has enabled pharmacological advances to treat these conditions by targeting defective systemic or central pathways utilizing specific agonists and antagonists.


2003 ◽  
Vol 90 (3) ◽  
pp. 1643-1653 ◽  
Author(s):  
Richard Bertram ◽  
Jessica Swanson ◽  
Mohammad Yousef ◽  
Zhong-Ping Feng ◽  
Gerald W. Zamponi

G protein–coupled receptors are ubiquitous in neurons, as well as other cell types. Activation of receptors by hormones or neurotransmitters splits the G protein heterotrimer into Gα and Gβγ subunits. It is now clear that Gβγ directly inhibits Ca2+ channels, putting them into a reluctant state. The effects of Gβγ depend on the specific β and γ subunits present, as well as the β subunit isoform of the N-type Ca2+ channel. We describe a minimal mathematical model for the effects of G protein action on the dynamics of synaptic transmission. The model is calibrated by data obtained by transfecting G protein and Ca2+ channel subunits into tsA-201 cells. We demonstrate with numerical simulations that G protein action can provide a mechanism for either short-term synaptic facilitation or depression, depending on the manner in which G protein–coupled receptors are activated. The G protein action performs high-pass filtering of the presynaptic signal, with a filter cutoff that depends on the combination of G protein and Ca2+ channel subunits present. At stimulus frequencies above the cutoff, trains of single spikes are transmitted, while only doublets are transmitted at frequencies below the cutoff. Finally, we demonstrate that relief of G protein inhibition can contribute to paired-pulse facilitation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Roberta Lattanzi ◽  
Cinzia Severini ◽  
Daniela Maftei ◽  
Luciano Saso ◽  
Aldo Badiani

The prokineticin (PK) family, prokineticin 1 and Bv8/prokineticin 2 (PROK2), initially discovered as regulators of gastrointestinal motility, interacts with two G protein-coupled receptors, PKR1 and PKR2, regulating important biological functions such as circadian rhythms, metabolism, angiogenesis, neurogenesis, muscle contractility, hematopoiesis, immune response, reproduction and pain perception. PROK2 and PK receptors, in particular PKR2, are widespread distributed in the central nervous system, in both neurons and glial cells. The PROK2 expression levels can be increased by a series of pathological insults, such as hypoxia, reactive oxygen species, beta amyloid and excitotoxic glutamate. This suggests that the PK system, participating in different cellular processes that cause neuronal death, can be a key mediator in neurological/neurodegenerative diseases. While many PROK2/PKRs effects in physiological processes have been documented, their role in neuropathological conditions is not fully clarified, since PROK2 can have a double function in the mechanisms underlying to neurodegeneration or neuroprotection. Here, we briefly outline the latest findings on the modulation of PROK2 and its cognate receptors following different pathological insults, providing information about their opposite neurotoxic and neuroprotective role in different pathological conditions.


Author(s):  
Meriem Zekri ◽  
Karima Alem ◽  
Labiba Souici-Meslati

The G protein-coupled receptors (GPCRs) include one of the largest and most important families of multifunctional proteins known to molecular biology. They play a key role in cell signaling networks that regulate many physiological processes, such as vision, smell, taste, neurotransmission, secretion, immune responses, metabolism, and cell growth. These proteins are thus very important for understanding human physiology and they are involved in several diseases. Therefore, many efforts in pharmaceutical research are to understand their structures and functions, which is not an easy task, because although thousands GPCR sequences are known, many of them remain orphans. To remedy this, many methods have been developed using methods such as statistics, machine learning algorithms, and bio-inspired approaches. In this article, the authors review the approaches used to develop algorithms for classification GPCRs by trying to highlight the strengths and weaknesses of these different approaches and providing a comparison of their performances.


2018 ◽  
Vol 19 (12) ◽  
pp. 3912 ◽  
Author(s):  
Zhengbing Wang ◽  
Wenwu Zhou ◽  
Muhammad Hameed ◽  
Jiali Liu ◽  
Xinnian Zeng

Neuropeptides are endogenous active substances that widely exist in multicellular biological nerve tissue and participate in the function of the nervous system, and most of them act on neuropeptide receptors. In insects, neuropeptides and their receptors play important roles in controlling a multitude of physiological processes. In this project, we sequenced the transcriptome from twelve tissues of the Asian citrus psyllid, Diaphorina citri Kuwayama. A total of 40 candidate neuropeptide genes and 42 neuropeptide receptor genes were identified. Among the neuropeptide receptor genes, 35 of them belong to the A-family (or rhodopsin-like), four of them belong to the B-family (or secretin-like), and three of them are leucine-rich repeat-containing G-protein-coupled receptors. The expression profile of the 82 genes across developmental stages was determined by qRT-PCR. Our study provides the first investigation on the genes of neuropeptides and their receptors in D. citri, which may play key roles in regulating the physiology and behaviors of D. citri.


2005 ◽  
Vol 10 (8) ◽  
pp. 765-779 ◽  
Author(s):  
Wayne R. Leifert ◽  
Amanda L. Aloia ◽  
Olgatina Bucco ◽  
Richard V. Glatz ◽  
Edward J. McMurchie

Signal transduction by G-protein-coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to activation of a genericmolecular switch involving heterotrimeric G-proteins and guanine nucleotides. Signal transduction has been studied extensively with both cell-based systems and assays comprising isolated signaling components. Interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, highthroughput screening, biosensors, and so on will focus greater attention on assay development to allow for miniaturization, ultra-high throughput and, eventually, microarray/biochip assay formats. Although cell-based assays are adequate for many GPCRs, it is likely that these formatswill limit the development of higher density GPCRassay platforms mandatory for other applications. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR assay platforms adaptable for such applications as microarrays. The authors review current cell-free GPCR assay technologies and molecular biological approaches for construction of novel, functional GPCR assays.


Sign in / Sign up

Export Citation Format

Share Document