scholarly journals Leptin Acts in the Periphery to Protect Thymocytes from Glucocorticoid-Mediated Apoptosis in the Absence of Weight Loss

Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 5209-5218 ◽  
Author(s):  
Robert N. Trotter-Mayo ◽  
Margo R. Roberts

Leptin is a member of the IL-6 cytokine family and is primarily produced by adipose tissue. At high enough concentration, leptin engages leptin receptors expressed in the hypothalamus that regulate a variety of functions, including induction of weight loss. Mice deficient in leptin (ob/ob) or leptin receptor (db/db) function exhibit thymic atrophy associated with a reduction in double-positive (DP) thymocytes. However, the mediator of such thymic atrophy remains to be identified, and the extent to which leptin acts in the periphery vs. the hypothalamus to promote thymocyte cellularity is unknown. In the present study, we first demonstrate that thymic cellularity and composition is fully restored in ob/ob mice subjected to adrenalectomy. Second, we observe that ob/ob mice treated with low-dose leptin peripherally but not centrally exhibit increased thymocyte cellularity in the absence of any weight loss or significant reduction in systemic corticosterone levels. Third, we demonstrate that reconstitution of db/db mice with wild-type bone marrow augments thymocyte cellularity and restores DP cell frequency despite elevated corticosterone levels. These and additional data support a mode of action whereby leptin acts in the periphery to reduce the sensitivity of DP thymocytes to glucocorticoid-mediated apoptosis in vivo. Strikingly, our data reveal that leptin’s actions on thymic cellularity in the periphery can be uncoupled from its anorectic actions in the hypothalamus.

2000 ◽  
Vol 279 (1) ◽  
pp. E116-E123 ◽  
Author(s):  
S. Dridi ◽  
N. Raver ◽  
E. E. Gussakovsky ◽  
M. Derouet ◽  
M. Picard ◽  
...  

The chicken leptin sequence, in contrast to mammalian leptins, contains an unpaired Cys at position 3 of the original cDNA ( AF012727 ). The presence of an extra Cys may confer a different structure and affect the leptin's biological activity. To address this, we studied the effects of wild-type and mutated (C4S) chicken leptins in vitro and in vivo and compared them with mammalian leptin prepared from ovine leptin cDNA. The prokaryotic expression vector pMON, encoding full-size A(−1) chicken leptin ( AF012727 ), was mutated using a mutagenesis kit, yielding the C4S analog. Escherichia coli cells transformed with this vector overexpressed large amounts of chicken leptin C4S upon induction with nalidixic acid. The expressed protein, found in the inclusion bodies, was refolded and purified to homogeneity on a Q-Sepharose column, yielding three electrophoretically pure fractions, eluted from the column by 100, 125, and 150 mM NaCl, respectively. All three fractions showed a single band of the expected molecular mass (16 kDa) and were composed of >95% monomeric protein. Proper refolding was evidenced by comparing the circular dichroism spectrum of the analog with spectra of nonmutated chicken and ovine leptins. The biological activity of the C4S analog was evidenced by its ability to stimulate proliferation of leptin-sensitive BAF/3 cells transfected with a long form of human leptin receptor construct similar to its nonmutated counterpart, indicating that Cys4 plays no role in leptin activity. The in vitro activity of both wild-type and mutated chicken leptins was ∼10-fold lower than that of ovine leptin. After intravenous or intraperitoneal injections, C4S analog and the nonmutated chicken and ovine leptins all lowered the food intake of starved 9-day-old broiler or 5-wk-old layer male chickens by 11–34%. Monitoring food behavior revealed that the attenuated food intake resulted not from a decreased number of approaches to the feeders but from a decrease in the average time spent eating during each approach.


Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1671-1678 ◽  
Author(s):  
Yoshihiro Yamada ◽  
Nobuyuki Takakura ◽  
Hirofumi Yasue ◽  
Hisao Ogawa ◽  
Hajime Fujisawa ◽  
...  

Neuropilin 1 (NP-1) is a receptor for vascular endothelial growth factor (VEGF) 165 (VEGF165) and acts as a coreceptor that enhances VEGF165 function through tyrosine kinase VEGF receptor 2 (VEGFR-2). Transgenic overexpression of np-1results in an excess of capillaries and blood vessels and a malformed heart. Thus, NP-1 may have a key role in vascular development. However, how NP-1 regulates vascular development is not well understood. This study demonstrates how NP-1 can regulate vasculogenesis and angiogenesis in vitro and in vivo. In homozygous np-1mutant (np-1−/−) murine embryos, vascular sprouting was impaired in the central nervous system and pericardium. Para-aortic splanchnopleural mesoderm (P-Sp) explants fromnp-1−/− mice also had vascular defects in vitro. A monomer of soluble NP-1 (NP-1 tagged with Flag epitope) inhibited vascular development in cultured wild-type P-Sp explants by sequestering VEGF165. In contrast, a dimer of soluble NP-1 (NP-1 fused with the Fc part of human IgG) enhanced vascular development in cultured wild-type P-Sp explants. Moreover, the NP-1–Fc rescued the defective vascular development in culturednp-1−/− P-Sp explants. A low dose of VEGF alone did not promote phosphorylation of VEGFR-2 on endothelial cells from np-1−/− embryos, but simultaneous addition of a low dose of VEGF and NP-1–Fc phosphorylated VEGFR-2 significantly. Moreover, NP-1–Fc rescued the defective vascularity of np-1−/− embryos in vivo. These results suggest that a dimer form of soluble NP-1 delivers VEGF165 to VEGFR-2–positive endothelial cells and promotes angiogenesis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 101-101
Author(s):  
Rizwan Romee ◽  
Rosario Maximillian ◽  
Melissa M Berrien-Elliott ◽  
Julia A Wagner ◽  
Brea A Jewell ◽  
...  

Abstract Natural killer (NK) cells mediate anti-AML responses and previously published clinical trials of adoptive allogeneic NK cell therapy provide proof-of-principle that NK cells may eliminate leukemia cells in patients. However, complete remissions occur in 30-50% of patients with active AML and are typically of limited duration. Thus, improvements are needed for this promising cellular immunotherapy strategy. Following paradigm-shifting studies in mice, it was established that human NK cells exhibit an innate 'memory-like' responses following a brief, combined pre-activation with IL-12, -15, and -18 (Romee R et. al., Blood, 2012). These long-lived memory-like NK cells have an enhanced ability to produce IFN-g in response to restimulation with cytokines or activating receptor ligation, even following extensive proliferation. We hypothesized that memory-like NK cells exhibit enhanced responses to myeloid leukemia. Compared to control NK cells from the same donor, IL-12/15/18-induced memory-like NK cells produced significantly increased IFN-g upon co-culture with primary AML blasts in vitro (P<0.001), following 7 days of rest in low dose IL-15 vitro. In addition, memory-like NK cells had increased granzyme B expression (P<0.01), and enhanced killing of K562 leukemia targets in vitro (P<0.05). Utilizing an in vivo xenograft model of human NK cells in NSG mice (Leong J et. al., BBMT, 2014), IL-12/15/18-induced memory-like NK cells that differentiated in NSG mice for 7 days exhibited increased IFN-g responses after ex vivo re-stimulation with K562 leukemia, confirming their memory-like functionality (P<0.05). To test in vivo responses to human leukemia in this model, luciferase-expressing K562 cells were engrafted into NSG mice (1x106/mouse, IV), and on day 3, groups of mice were injected with IL-12/15/18-pre-activated or control NK cells from the same donor (4x106/mouse). Mice treated with a single dose of memory-like NK cells exhibited significantly improved in vivo leukemia control measured by whole mouse bioluminescent imaging (P=0.03), as well as overall survival (P<0.05), compared to mice treated with control or no NK cells. Based on these pre-clinical findings, we initiated a first-in-human clinical trial of HLA-haploidentical IL-12/15/18-induced memory-like NK cells in patients with AML (NCT01898793). Relapsed/refractory (rel/ref) AML patients receive lymphodepleting non-myeloablative flu/cy conditioning, infusion of a single dose of CD56+CD3- memory-like donor NK cells, followed by two weeks of low dose rhIL-2. Three patients were treated at dose level 1 (0.5x106 cells/kg) and two patients treated at dose level 2 (1.0x106/kg) with no DLTs observed, and accrual continues. Correlative analyses utilizing donor-specific HLA mAbs allow tracking of donor memory-like NK cell frequency and function following adoptive transfer. Donor memory-like NK cells were detectable in the PB and BM of all tested patients with informative HLA (4/5), peak in frequency at 7-8 days post-infusion, and contract after 14-21 days as expected following recipient T cell recovery (Figure). Memory-like NK cells exhibit significantly increased Ki67%+ as a marker of proliferation at day 7 [97.8+1.0% (donor) vs. 21.6+5.5% (recipient), mean+SEM, P<0.001]. Moreover, functional analyses of NK cells at days 7-8 post-infusion reveal increased numbers of donor IFN-g+ NK cells following restimulation with K562 leukemia cells in the same blood [1009+590 (donor) vs. 8+3 (recipient) IFN-g+ NK cells] or BM [686+423 (donor) vs. 4+2 (recipient) IFN-g+ NK cells] samples. Two of four evaluable patients treated with memory-like NK cells had leukemia free BM and PB at days 14 post-therapy, which correlated with BM NK cell frequency and IFN-g production (Figure). CIML007 had rel/ref AML with 48% BM blasts pre-therapy, and had no evidence of leukemia on day 14, 28, and 100 BM biopsies, and has an ongoing complete remission more than 100 days after this therapy. CIML009 had 80% BM blasts pre-therapy, and had no evidence of leukemia on day 14 BM biopsy post-infusion. Thus, human IL-12/15/18-induced memory-like NK cells expand and have enhanced anti-AML function following adoptive transfer in patients, thereby constituting a promising translational innovation for immunotherapy of AML. Figure 1. Figure 1. Disclosures Fehniger: Celgene: Research Funding.


2021 ◽  
Vol 21 ◽  
Author(s):  
Ming-Hsien Tsai ◽  
How-Ran Chao ◽  
Jheng-Jie Jiang ◽  
Yu-Hsieh Su ◽  
Mariene-syne P. Cortez ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 653-653
Author(s):  
Zhenyu Li ◽  
Guoying Zhang ◽  
Hong Yin ◽  
Robert Feil ◽  
Franz Hofmann ◽  
...  

Abstract Although it was previously believed that the intracellular secondary messenger cGMP inhibits platelets, we have recently shown that cGMP-dependent protein kinase I (PKG I) in fact plays a stimulatory role in platelet activation. However, there are apparent differences between the PKG inhibitors and PKG I knockout in their effects on platelet activation. PKG inhibitors are more potent in inhibiting platelet activation than PKG I knockout. More importantly, although platelet secretion and aggregation induced by collagen were inhibited by PKG inhibitors, they are not significantly affected in PKG I knockout platelets. There are two types of PKG, PKG I and PKG II. PKG II has not been previously described in platelets. Here we show that PKG II mRNA is expressed in platelets using RT-PCR with primers specific for a C-terminal fragment of human PKG II cDNA. We further cloned the complete cDNA of human PKG II by RT-PCR using the purified human platelet mRNA as a template. Furthermore, PKG II from platelet lysates was pulled down by cGMP conjugated agarose beads and detected by western blot using a polyclonal antibody against PKG II. These data indicate that PKG II is expressed in platelets. To investigate the role of PKG II in platelet activation, washed wild type or PKG II knockout (PKG II−/−) mouse platelets in tyrode’s solution were exposed to platelet agonists. Platelet aggregation and ATP secretion induced by low concentrations of collagen were significantly reduced in PKG II deficient mice, indicating that PKG II plays important roles in collagen-induced platelet activation. PKG II−/− platelets also showed reduced aggregation and secretion to low dose of a thromboxane A2 (TXA2) analog, U46619. However, low dose thrombin-induced platelet activation was not negatively affected in PKG II−/− platelets, but was inhibited in PKG I−/− platelets. To evaluate the in vivo role of PKG II, we compared in vivo thrombus formation of wild type and PKG II knockout mice using the FeCl3-injured carotid artery thrombosis model. The time to the formation of stable thrombus in PKG II−/− mice (median, 420.0 seconds, n=15) is significantly prolonged compared to wild type mice (median, 321.0 seconds, n=15) (p=0.031). Tail-bleed time analysis also indicated a remarkably prolonged bleeding time in PKG II−/− mice (the median bleeding time was 73.50 seconds (n=18) in wild type mice, 454.50 seconds (n=20) in PKG II knockout mice) (p=0.0008). Thus, PKG II plays an important role in promoting platelet activation, thrombosis and hemostasis. PKG I and PKG II have differential roles in platelet activation induced by different platelet agonists.


2018 ◽  
Vol 115 (51) ◽  
pp. 13069-13074 ◽  
Author(s):  
Francesca Lovat ◽  
Matteo Fassan ◽  
Diana Sacchi ◽  
Parvathi Ranganathan ◽  
Alexey Palamarchuk ◽  
...  

MicroRNAs (miRNAs) have been extensively reported to be associated with hematological malignancies. The loss of miR-15a/16–1 at chromosome 13q14 is a hallmark of most of human chronic lymphocytic leukemia (CLL). Deletion of murine miR-15a/16–1 and miR-15b/16–2 has been demonstrated to promote B cell malignancies. Here, we evaluate the biological role of miR-15/16 clusters, crossbreeding miR-15a/16–1 and miR-15b/16–2 knockout mice. Unexpectedly, the complete deletion of both clusters promoted myeloproliferative disorders in the majority of the mice by the age of 5 months with a penetrance of 70%. These mice showed a significant enlargement of spleen and abnormal swelling of lymph nodes. Flow cytometry characterization demonstrated an expanded CD11b/Gr-1 double-positive myeloid population both in spleen and in bone marrow. The transplantation of splenocytes harvested from double-KO mice into wild-type recipient mice resulted in the development of myeloproliferative disorders, as observed in the donors. In vivo, miR-15/16 cluster deletion up-regulated the expression of Cyclin D1, Cyclin D2, and Bcl-2. Taken together, our findings identify a driver oncogenic role for miR-15/16 cluster deletion in different leukocytic cell lineages.


2016 ◽  
Vol 311 (6) ◽  
pp. E939-E948 ◽  
Author(s):  
Ruth B. S. Harris ◽  
Bhavna N. Desai

Previous studies have shown that very low-dose infusions of leptin into the third or the fourth ventricle alone have little effect on energy balance, but simultaneous low-dose infusions cause rapid weight loss and increased phosphorylation of STAT3 (p-STAT3) in hypothalamic sites that express leptin receptors. Other studies show that injecting high doses of leptin into the fourth ventricle inhibits food intake and weight gain. Therefore, we tested whether fourth-ventricle leptin infusions that cause weight loss are associated with increased leptin signaling in the hypothalamus. In a dose response study 14-day infusions of increasing doses of leptin showed significant hypophagia, weight loss, and increased hypothalamic p-STAT3 in rats receiving at least 0.9 μg leptin/day. In a second study 0.6 μg leptin/day transiently inhibited food intake and reduced carcass fat, but had no significant effect on energy expenditure. In a final study, we identified the localization of STAT3 activation in the hypothalamus of rats receiving 0, 0.3, or 1.2 μg leptin/day. The high dose of leptin, which caused weight loss in the first experiment, increased p-STAT3 in the ventromedial, dorsomedial, and arcuate nuclei of the hypothalamus. The low dose that increased brown fat UCP1 but did not affect body composition in the first experiment had little effect on hypothalamic p-STAT3. We propose that hindbrain leptin increases the precision of control of energy balance by lowering the threshold for leptin signaling in the forebrain. Further studies are needed to directly test this hypothesis.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Rachel Vaivoda ◽  
Christine Vaine ◽  
Cassandra Boerstler ◽  
Kristy Galloway ◽  
Peter Christmas

CYP4Fs were first identified as enzymes that catalyze hydroxylation of leukotriene B4(LTB4). CYP4F18 has an unusual expression in neutrophils and was predicted to play a role in regulating LTB4-dependent inflammation. We compared chemotaxis of wild-type andCyp4f18knockout neutrophils using anin vitroassay. There was no significant difference in the chemotactic response to LTB4, but the response to complement component C5a increased 1.9–2.25-fold in knockout cells compared to wild-type (P< 0.01). This increase was still observed when neutrophils were treated with inhibitors of eicosanoid synthesis. There were no changes in expression of other CYP4 enzymes in knockout neutrophils that might compensate for loss of CYP4F18 or lead to differences in activity. A mouse model of dextran sodium sulfate colitis was used to investigate the consequences of increased C5a-dependent chemotaxisin vivo, but there was no significant difference in weight loss, disease activity, or colonic tissue myeloperoxidase between wild-type andCyp4f18knockout mice. This study demonstrates the limitations of inferring CYP4F function based on an ability to use LTB4as a substrate, points to expanding roles for CYP4F enzymes in immune regulation, and underscores thein vivochallenges of CYP knockout studies.


1995 ◽  
Vol 181 (2) ◽  
pp. 485-491 ◽  
Author(s):  
J Ogasawara ◽  
T Suda ◽  
S Nagata

Fas is a cell surface protein that mediates apoptosis. A mouse mutant, lpr (lymphoproliferation), has a mutation in the Fas gene. In this report, we studied the expression and function of Fas in various subpopulations of mouse thymocytes. Abundant expression of Fas was detected on CD4+CD8+ double positive as well as CD4+ or CD8+ single positive thymocytes in wild-type mice. Little or low levels of Fas were expressed in CD4-CD8- double negative thymocytes except for the CD4-CD8-CD3+ phenotype, which expresses Fas as abundantly as double positive or single positive subsets. On the other hand, no Fas expression was detected in any population of thymocytes from lpr mice. When the wild-type thymocytes were treated with the agonistic anti-Fas antibody, double positive cells from the wild-type mice were selectively killed by apoptosis, whereas, the single positive cells were resistant to its cytolytic activity despite their abundant expression of Fas. Unlike the apoptosis of thymocytes induced by glucocorticoid or T cell activator, the Fas-induced apoptosis of thymocytes was enhanced by metabolic inhibitors such as cycloheximide. Furthermore, intraperitoneal administration of the anti-Fas antibody into mice caused rapid apoptosis of thymocytes in vivo.


2017 ◽  
Vol 313 (2) ◽  
pp. E134-E147 ◽  
Author(s):  
Ruth B. S. Harris

We previously reported that low-dose leptin infusions into the third or fourth ventricle that do not affect energy balance when given independently cause rapid weight loss when given simultaneously. Therefore, we tested whether hindbrain leptin enhances the response to forebrain leptin or whether forebrain leptin enhances the response to hindbrain leptin. Rats received fourth-ventricle infusions of saline or 0.01, 0.1, 0.3, or 0.6 μg leptin/day for 13 days. On days 9 and 13, 0.1 μg leptin was injected into the third ventricle. The injection inhibited food intake for 36 h in saline-infused rats but for 60 h in those infused with 0.6 μg leptin/day. Leptin injection increased intrascapular brown fat temperature in leptin-infused, but not saline-infused, rats. In a separate experiment, rats received third-ventricle infusions of saline or 0.005, 0.01, 0.05, or 0.1 μg leptin/day and fourth-ventricle injections of 1.0 μg leptin on days 9 and 13. Leptin injection inhibited food intake, respiratory exchange ratio, and 14-h food intake in rats infused with saline or the two lowest doses of leptin. There was no effect with higher-dose leptin infusions because food intake, body fat, and lean mass were already inhibited. These data suggest that activation of leptin receptors in the hindbrain enhances the response to third-ventricle leptin, whereas activation of forebrain leptin receptors does not enhance the response to fourth-ventricle leptin, consistent with our previous finding that weight loss in rats treated with fourth-ventricle leptin is associated with indirect activation of hypothalamic STAT3.


Sign in / Sign up

Export Citation Format

Share Document