scholarly journals Acquisition of Sexual Receptivity: Roles of Chromatin Acetylation, Estrogen Receptor-α, and Ovarian Hormones

Endocrinology ◽  
2011 ◽  
Vol 152 (8) ◽  
pp. 3172-3181 ◽  
Author(s):  
Paul J. Bonthuis ◽  
James K. Patteson ◽  
Emilie F. Rissman

Sexually naïve, hormone-primed, C57BL/6J female mice are not receptive to mating attempts by conspecific males. Repeated experience with sexually active males and concurrent treatment with estradiol and progesterone gradually increases female receptivity over the course of five trials to maximal levels. Ovarian hormones activate their cognate nuclear steroid receptors estrogen receptor-α and progesterone receptor to induce female sexual receptivity. Nuclear receptors recruit coactivators of transcription that include histone acetyltransferases to hormone responsive genes. In this set of studies, we found that the histone deacetylase inhibitor sodium butyrate enhances the experiential acquisition of receptivity. Evidence is provided that the actions of sodium butyrate on receptivity require activated estrogen receptor-α and progesterone.

2005 ◽  
Vol 185 (3) ◽  
pp. 539-549 ◽  
Author(s):  
Andrei G Gunin ◽  
Irina N Kapitova ◽  
Nina V Suslonova

It is suggested that estrogen hormones recruit mechanisms controlling histone acetylation to bring about their effects in the uterus. However, it is not known how the level of histone acetylation affects estrogen-dependent processes in the uterus, especially proliferation and morphogenetic changes. Therefore, this study examined the effects of histone deacetylase blockers, trichostatin A and sodium butyrate, on proliferative and morphogenetic reactions in the uterus under long-term estrogen treatment. Ovari-ectomized mice were treated with estradiol dipropionate (4 μg per 100 g; s.c., once a week) or vehicle and trichostatin A (0.008 mg per 100 g; s.c., once a day) or sodium butyrate (1% in drinking water), or with no additional treatments for a month. In animals treated with estradiol and trichostatin A or sodium butyrate, uterine mass was increased, and abnormal uterine glands and atypical endometrial hyperplasia were found more often. Both histone deacetylase inhibitors produced an increase in the numbers of mitotic and bromodeoxyuridine-labelled cells in luminal and glandular epithelia, in stromal and myometrial cells. Levels of estrogen receptor-α and progesterone receptors in uterine epithelia, stromal and myometrial cells were decreased in mice treated with estradiol and trichostatin A or sodium butyrate. Expression of β-catenin in luminal and glandular epithelia was attenuated in mice treated with estradiol with trichostatin A or sodium butyrate. Both histone deacetylase inhibitors have similar unilateral effects; however the action of trichostatin A was more expressed than that of sodium butyrate. Thus, histone deacetylase inhibitors exert proliferative and morphogenetic effects of estradiol. The effects of trichostatin A and sodium butyrate are associated with changes in expression of estrogen receptor-α, progesterone receptors and β-catenin in the uterus.


2019 ◽  
Vol 115 ◽  
pp. 155-164 ◽  
Author(s):  
Christine A. Cabelka ◽  
Cory W. Baumann ◽  
Brittany C. Collins ◽  
Nardina Nash ◽  
Gengyun Le ◽  
...  

2005 ◽  
Vol 35 (3) ◽  
pp. 449-464 ◽  
Author(s):  
Jeong Hoon Kim ◽  
Mee Hyun Lee ◽  
Byoung Jin Kim ◽  
Jun Hyun Kim ◽  
Seong Jun Han ◽  
...  

Estrogen-dependent transcriptional activation by estrogen receptor α (ERα) depends on the conformation of helices 3 and 12 in the ligand-binding domain. To better understand the function of helix 3 in ERα, we examined the role of charged residues, which are conserved in most steroid receptors in helix 3, in estrogen-dependent transactivation. The replacement of Asp-351 with lysine (D351K) or leucine (D351 L) completely abolished estrogen-dependent transactivation without affecting estrogen-binding, DNA-binding and homodimerization activities in ERα. The mutations dramatically reduced the ligand-dependent activation function 2 activity and impaired the ability of ERα to bind p160 coactivators. In addition, the D351K mutant effectively inhibited the transcriptional activation activity of wild-type ERα. Furthermore Asp-351 was required not only for the estrogen-dependent conformational change of wild-type ERα but also for the constitutive transcriptional activity and ligand-independent active conformation of ERα mutant Y537N. Similarly, in the orphan nuclear receptor called estrogen-related receptor 3 (ERR3), the replacement of Asp-273 (the corresponding amino acid to Asp-351 in ERα) with lysine abolished constitutive transcriptional activity of ERR3 without affecting DNA-binding activity and impaired the ability of the receptor to interact with p160 coactivators. These data suggest a role of Asp-351 in inducing and stabilizing the active conformation of ERα, and our results experimentally confirm the concept that Asp-351 in helix 3 interacts with the amide hydrogen of L540 in helix 12 to form a transcriptionally competent surface for binding p160 coactivators.


Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 1101-1111 ◽  
Author(s):  
Jorgelina Varayoud ◽  
Jorge G. Ramos ◽  
Verónica L. Bosquiazzo ◽  
Melina Lower ◽  
Mónica Muñoz-de-Toro ◽  
...  

Endocrine disrupters have been associated with reproductive pathologies such as infertility and gynecological tumors. Using a rat model of early postnatal exposure to bisphenol A (BPA), we evaluated the long-term effects on 1) female reproductive performance, 2) uterine homeobox A10 (Hoxa10) and Hoxa10-target gene expression, and 3) ovarian steroid levels and uterine estrogen receptor α and progesterone (P) receptor expression. Newborn female rats received vehicle, BPA.05 (0.05 mg/kg · d), BPA20 (20 mg/kg · d), diethylstilbestrol.2 (0.2 μg/kg · d), or diethylstilbestrol 20 (20 μg/kg · d) on postnatal d 1, 3, 5, and 7. A significant decrease in the number of implantation sites was assessed in the xenoestrogen-exposed females. To address the molecular effects of postnatal xenoestrogen exposure on the pregnant uterus, we evaluated the expression of implantation-associated genes on d 5 of pregnancy (preimplantation uterus). All xenoestrogen-treated rats showed a lower expression of Hoxa10. In the same animals, two Hoxa10-downstream genes were misregulated in the uterus. β3Integrin, which is up-regulated by Hoxa10 in controls, was decreased, whereas empty spiracles homolog 2, which is down-regulated by Hoxa10, was increased. Furthermore a clear down-regulation of estrogen receptor α and P receptor expression was detected without changes in estradiol and P serum levels. The early exposure to BPA produced a lower number of implantation sites in association with a defective uterine environment during the preimplantation period. Alterations in the endocrine-regulated Hoxa10 gene pathways (steroid receptors—Hoxa10—β3integrin/empty spiracles homolog 2) could explain, at least in part, the BPA effects on the implantation process.


Sign in / Sign up

Export Citation Format

Share Document